

Proudly Operated by Battelle Since 1965

Lifecycle Evaluation of Li-ion Battery Chemistries under Grid Duty Cycles

Daiwon Choi, Alasdair Crawford, Qian Huang, Vish V. Viswanathan, Michael CW Kintner-Meyer, Vince L. Sprenkle

Pacific Northwest National Laboratory

Support from DOE Office of Electricity Delivery & Energy Reliability Energy Storage Program

iSTORAGE / DOE-OE Peer Review Washington DC, Sept. 25-28, 2016

Objectives

- How does use of Li-ion batteries for grid services affect their life?
- Comparison between different Li-ion battery chemistries (high energy vs. high power)
- Understanding degradation mechanism and factors that affect the battery performance.
- It will put a dollar cost on battery usage for various grid services.
- Accomplishments :
 - Frequency regulation service testing procedures developed per the DOE-OE Energy Storage Performance Protocol have been used for initial 90 cycle results.
 - Initial results show variations in performance of different Li-ion battery chemistries including cell reliability, round trip efficiency, charge/discharge energy and internal resistance with cycling.

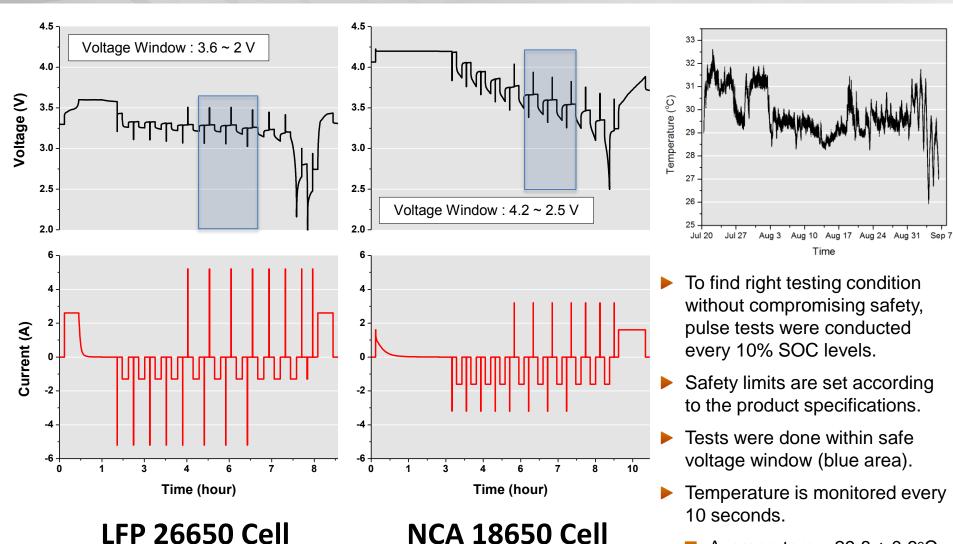
Approach

Cylindrical cells are selected from commercial vendors

- LiNi_{0.85}Co_{0.1}Al_{0.05} (NCA) high energy
 - 18650, 3.2 Ah, 2.5 4.2V, C/2 charge, 4C max. discharge
- LiFePO₄ (LFP) high power

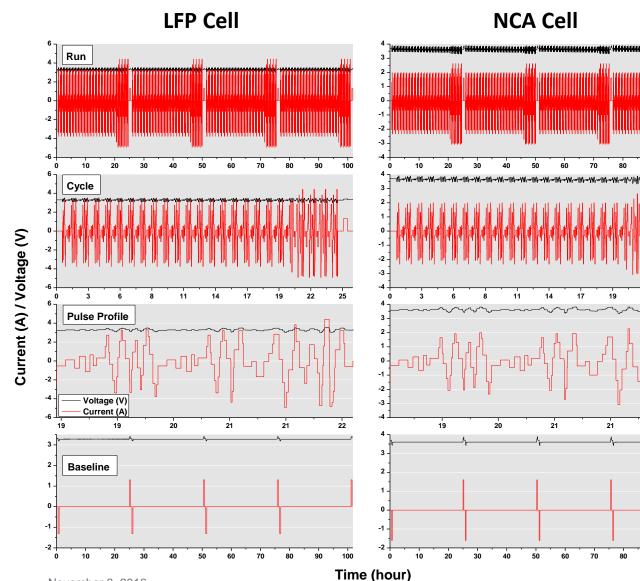
• 26650, 2.6 Ah, 2.0 - 3.6V, 1C charge, 20C max. discharge

- Subjected to the Frequency Regulation (FR) duty cycle per the DOE-OE Energy Storage Performance Protocol (led by PNNL and Sandia) using PJM duty cycle.
- Compared degradation versus baseline cells that are discharged to the same depth of discharge (DOD) and rested for the same duration.
- Determine internal resistance by applying pulse charge and discharge currents (1C for NCA cells, 2C for LFP cells).


Approach

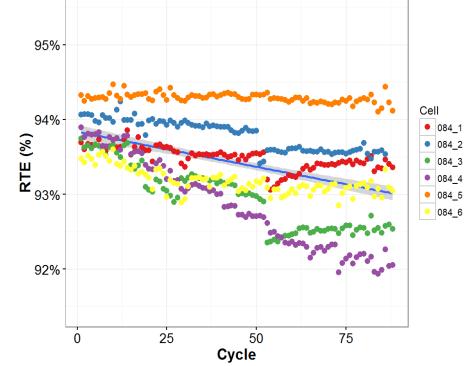
- Apply tight voltage limits (2% above upper and below lower limit for each chemistry) and capacity limits within 0.2 Ah of cell capacity.
- All tests are started at the same time with temperature monitoring.
- Degradation metrics during frequency regulation (FR):
 - Round trip efficiency (RTE)
 - Charge and discharge cumulative energy during frequency regulation
 - Internal resistance measured during frequency regulation
 - Cell variation and reliability
 - Aging effect
 - C/2 rate capacity (after every 40 cycles)
 - Internal resistance at various SOC (after every 40 cycles)

Li-ion Battery Chemistries

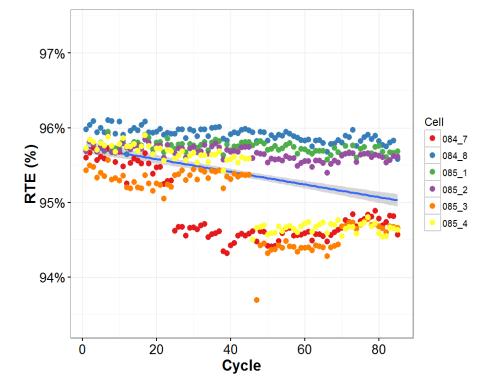


Average temp: 29.8 ± 0.6°C

Frequency Regulation Testing


- 1 FR cycle consists of 20 shallow and 4 aggressive pulse-profiles.
- Aggressive pulse contains 50% higher current than each battery specifications.
- After every 40 cycles, all cells are subjected to capacity and pulse tests.
- RTE is calculated by dividing the sum of all discharge energy by the sum of all charge energy.
- Tests start at 50% SOC.
- SOC test range : LFP FR: 22~58% Baseline: 32% NCA FR: 27~55% Baseline: 36%

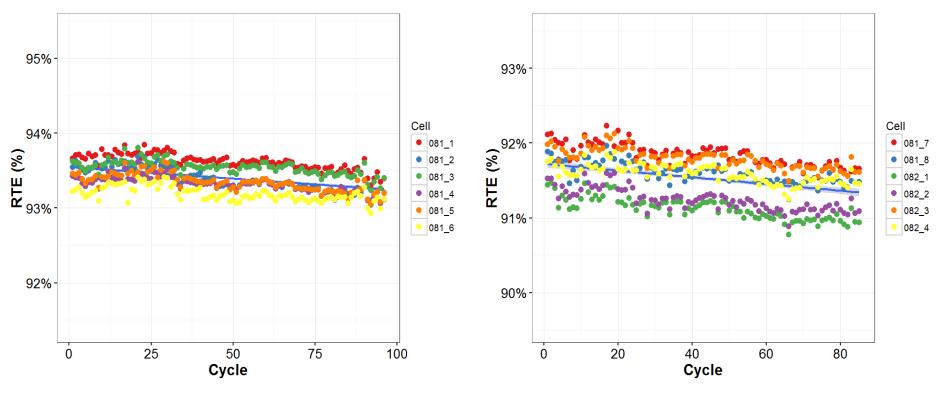
November 3, 2016


LFP Round Trip Efficiency

Frequency Regulation

Trend: -9.4% \pm 1.0% / 1000 Cycles

Baseline


Trend: $-8.5\% \pm 0.9\% / 1000$ Cycles

NCA Round Trip Efficiency

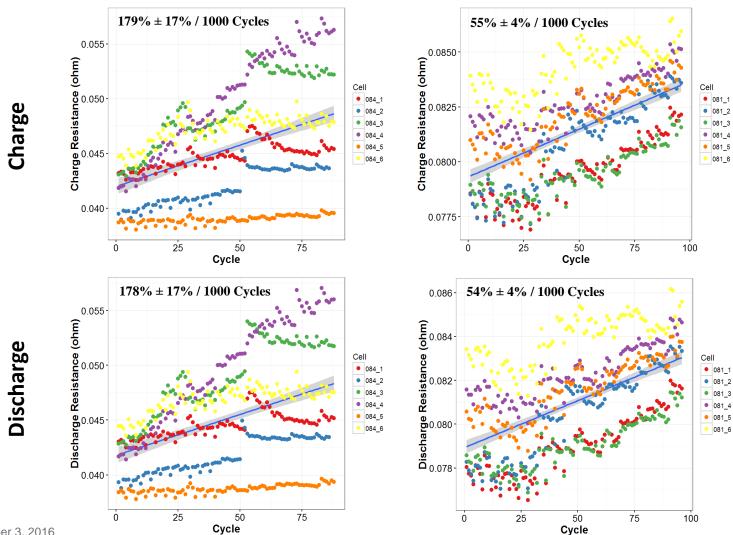
Proudly Operated by Battelle Since 1965

Frequency Regulation

Trend: $-3.1\% \pm 0.2\% / 1000$ Cycles

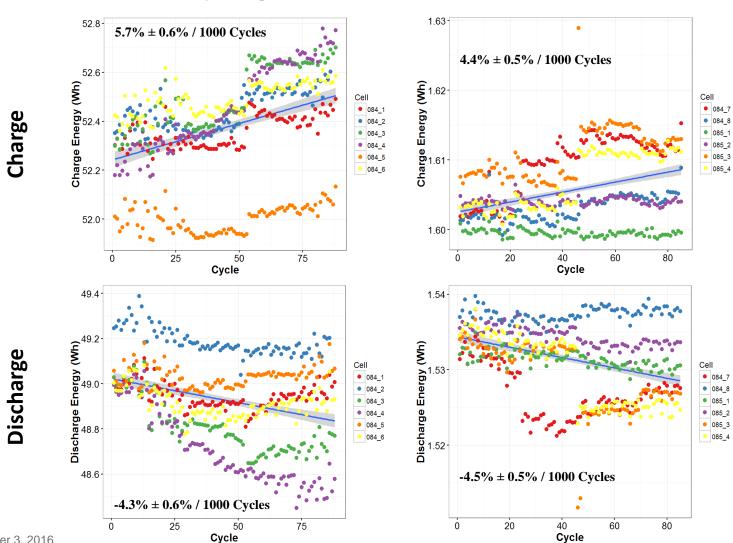
Trend: $-4.5\% \pm 0.5\% / 1000$ Cycles

Baseline


LFP & NCA Resistance

Proudly Operated by Battelle Since 1965

NCA



LFP Energy

Baseline

Proudly Operated by Battelle Since 1965

Frequency Regulation

NCA Energy

Cell

• 081 7

• 081_8

• 082_1

• 082_2

• 082_3

• 082_4

Cell

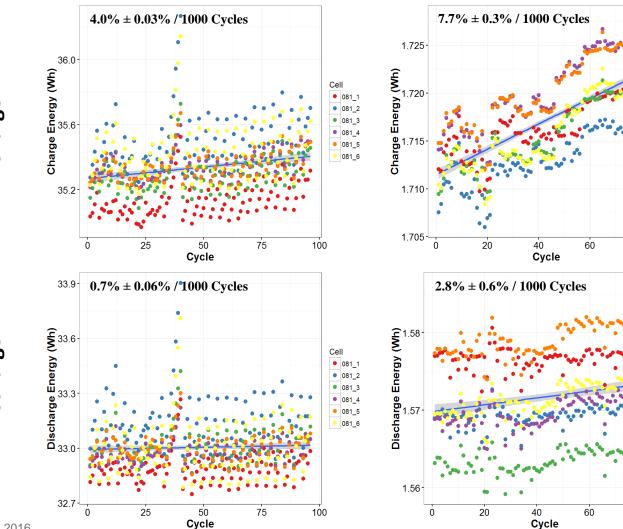
• 081 7

081_8082_1

082_2

082_3

082_4


80

80

Proudly Operated by Battelle Since 1965

Frequency Regulation

Baseline

Charge

Discharge

Reliability Test Results

- Overview of the trends each entry is the change per thousand cycles for RTE, charge/discharge energy as % of initial energy, and internal resistance during FR.
- Far right two columns are metrics for how well behaved the data is the RMS difference in RTE between cells performing the same tests, and the RMS deviation from a linear trend.

Туре	RTE	Energy		Resistance		RMS Deviation	
		Charge	Discharge	Charge	Discharge	(% in RTE)	
	(%/1000 cycles)	(% in Wh/1000 cycles)		(% in Ohm/1000 cycles)		between cells	from trend
LFP FR	-9.4	5.7	-4.3	179	177	0.6	0.1
LFP FR BS	-8.5	4.4	-4.5	-	-	0.5	0.2
NCA FR	-3.1	4.0	0.7	55	54	0.2	0.1
NCA FR BS	-4.5	7.7	2.8	-	-	0.3	0.1

Conclusions

- From tests performed within battery specifications and limited SOC ranges, baseline cell do not show significantly better stability than batteries under frequency regulation service.
- On average, LFP based cell showed higher RTE degradation than NCA based cell but some LFP cells show better stability than NCA cells.
- Cell performance deviation was larger for high power LFP based Li-ion battery.
- LFP cells show increase in charge but decrease in discharge energy while NCA cells show increase in charge/discharge energy with cycling.
- Due to high power capability, LFP cells utilized 1.6 times more energy than NCA cells during our test.
- So far, cells show linear degradation trend.

Future Work

Proudly Operated by Battelle Since 1965

- Extended cycling needed
 - More accurate RTE
 - Linear or nonlinear trend ?
 - Cell performance variation
 - Internal resistance change at various SOC levels
 - Capacity degradation
- Different SOC ranges and battery formats need to be evaluated.
- Testing under temperature controlled conditions (Thanks to James Ortega of Sandia National Laboratory for providing information).
- Analyses of cell internals at various stages of degradation would be useful.

Acknowledgements

Support from US DOE Office of Electricity Delivery & Energy Reliability - Dr. Imre Gyuk, Energy Storage Program Manager

PNNL

Mark Gross

Edwin Thomsen