Advanced Membranes for Vanadium Redox Flow Batteries (VRB)

Cy Fujimoto

Travis Anderson and Harry Pratt @ SNL; Tom Zawodzinski and Zhijiang Tang @ ORNL; Wei Wang and Xiaoling Wei @ PNNL
Project

- Separation of energy and power
- Robust battery. Allows for deep discharge and long life cycles
- Several US companies looking to commercialize this technology

Cost is focus since current capital costs range between $500-1000/kWh
Cost of VRB

- Cost calculated based on shunt-pumping losses and delivered power and energy capacity.

- Two types of VRB configurations
 1. Power intensive: 1 MW/0.25 MWh (Power quality applications)
 2. Energy intensive: 1 MW/4 MWh (Load following)

- In both scenarios the membrane separator takes up a significant portion of total cost

- Nafion™ $250-500/m²; Perfluorinated polymer (primarily C-F)

Sandia is developing low cost, hydrocarbon polymer (C-H) with better performances than Nafion

Evolution of VRB membranes

GEN 1 material:
+ Performance equivalent to PFSAs
- Durability, after 179 cycles oxidation of film

Test credit Soo-Han Kim 2012

Ex-situ: 0.1M V^{+5}

V^{+5} oxidizing un-substituted aryl rings
Evolution of VRFB membranes

Substitute $-\text{SO}_3\text{H}$ on all aryl groups

GEN 4 material

Hydrophilic segment
Controls ions and water flow

Hydrophobic segment
Mechanical support

Ions and water transport

Patent submitted Nov 2014 US 62/075,693
Membrane Durability

Ex situ durability

25 mL of 1.7 M V^{5+}, 5M SO_4^{2-}
200mg of membrane

Monitored V^{4+} production by UV-Vis

Before 1.7M V^{5+} exposure

48 hrs

After 1.7M V^{5+} exposure

GEN4 stability greater than GEN1 and GEN2

Test credit Zhijang Tang
ORNL
Membrane Performance

Tested in 2M mixed-acid VRB

- Good performance: Columbic efficiency 95%, voltage efficiency 94% and energy efficiency 90%
- Much higher charge retention compared to Nafion
- Small capacity decay with time, but large drops in part to solution leaking [test run time nearly 4 months]

GEN4 good performance much better capacity retention than Nafion
Membrane Performance

Xiaoliang, PNNL

Membrane after 300 cycles

- After cycling the membrane it shows some discoloration (white spots)
- IR analysis of active and non active area shows very little difference, suggesting little to no decomposition

We are looking into several alternatives

GEN4 may still need a few modifications, but almost there
Membrane Scalable, Cost?

- Feasible to scale chemistry? Yes
- Cost? Silicon dioxide (low volume pricing Sigma-Aldrich $64/kg) assume SiLk costs were not extremely far off from this value since cost was never an issue [Nafion $5000/kg approximately $250/m2]
Summary/Conclusions

- Gen4 significantly improved durability over Gen 1&2
- Gen4 VRB performance better than Nafion212
- Gen4 charge retention much better than Nafion 212
- Gen4 structure as presented, requires slight modification

Future Tasks

- Developing Gen4 with oxidative resistance hydrophobic domain
- Cost model development with external partner
- Further develop details in commercialization path forward
Thank You to the DOE OE and especially Dr. Gyuk for his dedication and support to the ES industry and Sandia’s ES Program.

Questions?

chfujim@sandia.gov
Outside interest

With ProtonOnsite proved alkaline electrolysis is feasible

With IP developed in the OE program, EERE fuel cell awarded SNL incubator project for intermediate temperature PEM fuel cell – Results very promising

Lower ASR in SNL over Nafion
Higher power in SNL over Nafion

Work with Dr. Zawodzinski

Showing promising data for multiple applications