ENERGY

Review of Testing on 1MW Lithium-Ion Battery at Reese Technology Center

Presentation to DOE/OE Program Peer Review

Ben Gully, PhD.
23 September 2015

DNV-GL Strategic Research & Innovation
benjamin.gully@dnvgl.com
Project Scope and Team

- Shell International Exploration & Production (US) Inc.
- Group NIRE - TTU
- DNV-GL
- Sandia National Labs

Project Purpose

- Utilize the co-location of high power, utility scale wind and power energy storage devices to evaluate services
 - Review of previous testing and utilization
 - Wind integration
 - Dual Application
 - Battery Sizing
Project Scope and Team

- Shell International Exploration & Production (US) Inc.
- Group NIRE - TTU
- DNV-GL
- Sandia National Labs

Project Purpose

- Utilize the co-location of high power, utility scale wind and power energy storage devices to evaluate services
 - Review of previous testing and utilization
 - Wind integration
 - Dual Application
 - Battery Sizing
Battery System & Presentation Overview

- Battery managed by Group-NIRE, operating on South Plains Electric Cooperative (SPEC)
- Testing program to be deployed Q4 2015
- This presentation to review analysis conducted on previous test data
 - Battery performance
 - Efficiency Assessments
 - Applications Analyses
 - Demand Response
 - Frequency Response
 - Wind Ramp Control
Battery System & Presentation Overview

- Battery managed by Group-NIRE, operating on South Plains Electric Cooperative (SPEC)
- Testing program to be deployed Q4 2015
- This presentation to review analysis conducted on previous test data
 - Battery performance
 - Efficiency Assessments
 - Applications Analyses
 - Demand Response
 - Frequency Response
 - Wind Ramp Control
Battery Performance Baseline Shows Consistent Performance in Demand Response Activity

- SOC calculation indicates a average total capacity of 1,088 kWh
- Maximum temperature is consistent 33°C (average 8° above ambient)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>#</th>
<th>Discharge Power (kW)</th>
<th>Initial SOC (%)</th>
<th>Final SOC (%)</th>
<th>Discharge Time (hrs)</th>
<th>Energy Out (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 16-18</td>
<td>1</td>
<td>478</td>
<td>100</td>
<td>9.0</td>
<td>2.08</td>
<td>988.95</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>484</td>
<td>100</td>
<td>7.7</td>
<td>2.10</td>
<td>1,001.3</td>
</tr>
<tr>
<td>July 20-23</td>
<td>1</td>
<td>475</td>
<td>100</td>
<td>25.1</td>
<td>1.75</td>
<td>827.65</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>477</td>
<td>100</td>
<td>5.0</td>
<td>2.48</td>
<td>1,039.4</td>
</tr>
<tr>
<td>Aug 12-15</td>
<td>1</td>
<td>975</td>
<td>90</td>
<td>9.6</td>
<td>0.93</td>
<td>876.70</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>965</td>
<td>88</td>
<td>9.0</td>
<td>0.95</td>
<td>823.18</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>970</td>
<td>91.9</td>
<td>7.8</td>
<td>1.22</td>
<td>907.98</td>
</tr>
<tr>
<td>Aug 19-21</td>
<td>1</td>
<td>965</td>
<td>88</td>
<td>1.0</td>
<td>0.97</td>
<td>948.27</td>
</tr>
</tbody>
</table>
Efficiency of Demand Response Activity is Dependent on Power

- Round trip efficiency calculated as ratio of total discharge energy to total discharge energy
- Average AC efficiency (measure at feeder) **7.4%** less than DC efficiency
- Tests selected for minimal time between charge/discharge & constant power

<table>
<thead>
<tr>
<th>Date</th>
<th>Charge Power</th>
<th>Discharge Power</th>
<th>AC Efficiency (%, feeder)</th>
<th>DC Efficiency (%, battery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 12 2014</td>
<td>200</td>
<td>1000</td>
<td>73.70</td>
<td>81.01</td>
</tr>
<tr>
<td>August 13 2014</td>
<td>100</td>
<td>1000</td>
<td>65.68</td>
<td>72.72</td>
</tr>
<tr>
<td>August 19 2014</td>
<td>200</td>
<td>1000</td>
<td>74.27</td>
<td>80.99</td>
</tr>
<tr>
<td>August 11 2015</td>
<td>250</td>
<td>1000</td>
<td>79.96</td>
<td>88.35</td>
</tr>
<tr>
<td>August 12 2015</td>
<td>200</td>
<td>1000</td>
<td>80.97</td>
<td>88.60</td>
</tr>
</tbody>
</table>
Efficiency of Demand Response Activity is Dependent on Power

- All discharged under same conditions (1,000 kW, full power, 1C)
 - Using round trip efficiency as metric with same discharge conditions
 - Efficiency of charging *increases* at lower power, which *lowers* total, round trip efficiency

- Evaluating round trip efficiency at same charge/discharge power hides these trends
Aggressive Frequency Response Activity Shows High Round Trip Efficiency

- ERCOT fast regulation market (FRRS)
- Lots of higher-power activity, large SOC movement
- Efficiencies very similar in scale to demand response activities

<table>
<thead>
<tr>
<th>Date</th>
<th>Function</th>
<th>AC Efficiency (feeder)</th>
<th>DC Efficiency (battery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept 4</td>
<td>FRRS</td>
<td>74.02</td>
<td>80.82</td>
</tr>
<tr>
<td>Sept 9</td>
<td>FRRS</td>
<td>73.97</td>
<td>81.16</td>
</tr>
<tr>
<td>Sept 10</td>
<td>FRRS</td>
<td>74.48</td>
<td>80.27</td>
</tr>
</tbody>
</table>
Local Wind Ramp Support and Frequency Response Efficiencies

- Inclusion of static load (20-40 kW) has significant impact dependent on time
- Operations much less active than FRRS, parasitic loads dominate efficiency
- Key concern for standby ‘spinning reserve’ applications as well as for guaranteed efficiency contract terms

<table>
<thead>
<tr>
<th>Date</th>
<th>Function</th>
<th>AC Efficiency (feeder)</th>
<th>DC Efficiency (battery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept 30</td>
<td>Wind+Freq</td>
<td>27.46</td>
<td>33.20</td>
</tr>
<tr>
<td>Oct 10</td>
<td>Wind+Freq</td>
<td>21.71</td>
<td>32.43</td>
</tr>
<tr>
<td>Oct 11</td>
<td>Wind+Freq</td>
<td>11.24</td>
<td>22.78</td>
</tr>
</tbody>
</table>
Wind Ramp Support Tests Also Characterized by Low Energy Throughput

- Small power correction followed by large energy compensation
- DC efficiency: 28.7%, AC efficiency: 21.8%
Additional Profile Characteristics for High Interval Applications

- Quantifying differences in battery application profiles
- Equivalent cycles per day calculated as the number of full 100% DOD cycles that would have resulted based on total energy throughput

<table>
<thead>
<tr>
<th>Date</th>
<th>Function</th>
<th>ΔSOC (%)</th>
<th>Cycles Per Day</th>
<th>Equivalent Cycles Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 26</td>
<td>Wind Ramp Support</td>
<td>0.71</td>
<td>158.4</td>
<td>1.12</td>
</tr>
<tr>
<td>Sept 4</td>
<td>FRRS</td>
<td>1.71</td>
<td>205.1</td>
<td>3.51</td>
</tr>
<tr>
<td>Sept 9</td>
<td>FRRS</td>
<td>2.66</td>
<td>152.7</td>
<td>4.06</td>
</tr>
<tr>
<td>Sept 10</td>
<td>FRRS</td>
<td>1.60</td>
<td>152.9</td>
<td>2.44</td>
</tr>
<tr>
<td>Sept 30</td>
<td>Wind+Freq</td>
<td>0.44</td>
<td>267.5</td>
<td>1.18</td>
</tr>
<tr>
<td>Oct 10</td>
<td>Wind+Freq</td>
<td>0.34</td>
<td>204.0</td>
<td>0.69</td>
</tr>
<tr>
<td>Oct 11</td>
<td>Wind+Freq</td>
<td>0.63</td>
<td>135.0</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Compare histograms of demand response, FRRS, low interval frequency, wind activity

- Wind

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Delta SOC (%)</th>
<th>Charge Power (kW)</th>
<th>Discharge Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

- FRRS

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Delta SOC (%)</th>
<th>Charge Power (kW)</th>
<th>Discharge Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

- Wind+Freq

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Delta SOC (%)</th>
<th>Charge Power (kW)</th>
<th>Discharge Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

\[x \times 10^4\]
Observations, Insights & Next Steps

Data to date provides significant insights into operational efficiency

- Full system efficiency (AC measured at the feeder) trails DC by 7-8%
- Imbalance of charge / discharge power level can result in at least 15% variation in system efficiency
 - Points to importance of methods for quantifying efficiency
- Low use factors or low energy throughput can result in very low effective system round trip efficiency
 - Points to importance of calculating operational efficiency in contracting
 - Parasitic loads play a dominant role
 - Test procedures for properly measuring standby loads \(\rightarrow\) DOE working group

Next steps – Begin new testing

- Test plan builds on data analysis to further focus on wind integration concepts and efficiency testing and evaluation
Thank You

Ben Gully
benjamin.gully@dnvgl.com
614-734-6154

www.dnvgl.com

SAFER, SMARTER, GREENER

Ungraded