

ENERGY

Review of Testing on 1MW Lithium-Ion Battery at Reese Technology Center

Presentation to DOE/OE Program Peer Review

Ben Gully, PhD. 23 September 2015

DNV-GL Strategic Research & Innovation

benjamin.gully@dnvgl.com

Ungraded

SAFER, SMARTER, GREENER

Project Scope and Team

- Shell International Exploration & Production (US) Inc.
- Group NIRE TTU
- DNV-GL
- Sandia National Labs

Project Purpose

- Utilize the co-location of high power, utility scale wind and power energy storage devices to evaluate services
 - Review of previous testing and utilization
 - Wind integration
 - Dual Application
 - Battery Sizing

Project Scope and Team

- Shell International Exploration & Production (US) Inc.
- Group NIRE TTU
- DNV-GL
- Sandia National Labs

Project Purpose

- Utilize the co-location of high power, utility scale wind and power energy storage devices to evaluate services
 - Review of previous testing and utilization
 - Wind integration
 - Dual Application
 - Battery Sizing

Battery System & Presentation Overview

- Battery managed by Group-NIRE, operating on South Plains Electric Cooperative (SPEC)
- Testing program to be deployed Q4 2015
- This presentation to review analysis conducted on previous test data
 - Battery performance
 - Efficiency Assessments
 - Applications Analyses
 - Demand Response
 - Frequency Response
 - Wind Ramp Control

1MW / 1MWh Lithium-Ion Battery at

Group NIRE, Reese Technology Center

4 DNV GL © 2014 23 September 2015

Battery System & Presentation Overview

- Battery managed by Group-NIRE, operating on South Plains Electric Cooperative (SPEC)
- Testing program to be deployed Q4 2015
- This presentation to review analysis conducted on previous test data
 - Battery performance
 - Efficiency Assessments
 - Applications Analyses
 - Demand Response
 - Frequency Response
 - Wind Ramp Control

1MW / 1MWh Lithium-Ion Battery at

Group NIRE, Reese Technology Center

Battery Performance Baseline Shows Consistent Performance in Demand Response Activity

- SOC calculation indicates a average total capacity of 1,088 kWh
- Maximum temperature is consistent 33°C (average 8° above ambient)

Time	#	Discharge	Initial	Final SOC	Discharge	Energy Out
Period		Power	SOC (%)	(%)	Time (hrs)	(kWh)
		(kW)				
July 16-18	1	478	100	9.0	2.08	988.95
	2	484	100	7.7	2.10	1,001.3
July 20-23	1	475	100	25.1	1.75	827.65
	2	477	100	5.0	2.48	1,039.4
Aug 12-15	1	975	90	9.6	0.93	876.70
	2	965	88	9.0	0.95	823.18
	3	970	91.9	7.8	1.22	907.98
Aug 19-21	1	965	88	1.0	0.97	948.27

Efficiency of Demand Response Activity is Dependent on Power

- Round trip efficiency calculated as ratio of total discharge energy to total discharge energy
- Average AC efficiency (measure at feeder) 7.4% less than DC efficiency
- Tests selected for minimal time between charge/discharge & constant power

Date	Charge Power	Discharge Power	AC Efficiency (%, feeder)	DC Efficiency (%, battery)
August 12 2014	200	1000	73.70	81.01
August 13 2014	100	1000	65.68	72.72
August 19 2014	200	1000	74.27	80.99
August 11 2015	250	1000	79.96	88.35
August 12 2015	200	1000	80.97	88.60

Efficiency of Demand Response Activity is Dependent on Power

- All discharged under same conditions (1,000 kW, full power, 1C)
 - Using round trip efficiency as metric with same discharge conditions
 - Efficiency of charging increases at lower power, which lowers total, round trip efficiency
- Evaluating round trip efficiency at same charge/discharge power hides these trends

Aggressive Frequency Response Activity Shows High Round Trip Efficiency

- ERCOT fast regulation market (FRRS)
- Lots of higher-power activity, large SOC movement
- Efficiencies very similar in scale to demand response activities

Date	Function	AC Efficiency (feeder)	DC Efficiency (battery)
Sept 4	FRRS	74.02	80.82
Sept 9	FRRS	73.97	81.16
Sept 10	FRRS	74.48	80.27

Local Wind Ramp Support and Frequency Response Efficiencies

- Inclusion of static load (20-40 kW) has significant impact dependent on time
- Operations much less active than FRRS, parasitic loads dominate efficiency
- Key concern for standby 'spinning reserve' applications as well as for guaranteed efficiency contract terms

Date	Function	AC Efficiency (feeder)	DC Efficiency (battery)
Sept 30	Wind+Freq	27.46	33.20
Oct 10	Wind+Freq	21.71	32.43
Oct 11	Wind+Freq	11.24	22.78

Wind Ramp Support Tests Also Characterized by Low Energy Throughput

- Small power correction followed by large energy compensation
- DC efficiency: 28.7%, AC efficiency: 21.8%

Additional Profile Characteristics for High Interval Applications

- Quantifying differences in battery application profiles
- Equivalent cycles per day calculated as the number of full 100% DOD cycles that would have resulted based on total energy throughput

Date	Function	∆ SOC (%)	Cycles Per Day	Equivalent Cycles Per Day
August 26	Wind Ramp Support	0.71	158.4	1.12
Sept 4	FRRS	1.71	205.1	3.51
Sept 9	FRRS	2.66	152.7	4.06
Sept 10	FRRS	1.60	152.9	2.44
Sept 30	Wind+Freq	0.44	267.5	1.18
Oct 10	Wind+Freq	0.34	204.0	0.69
Oct 11	Wind+Freq	0.63	135.0	0.85

Compare histograms of demand response, FRRS, low interval frequency, wind activity

Observations, Insights & Next Steps

Data to date provides significant insights into operational efficiency

- Full system efficiency (AC measured at the feeder) trails DC by 7-8%
- Imbalance of charge / discharge power level can result in at least 15% variation in system efficiency
 - Points to importance of methods for quantifying efficiency
- Low use factors or low energy throughput can result in very low effective system round trip efficiency
 - Points to importance of calculating operational efficiency in contracting
 - Parasitic loads play a dominant role
 - Test procedures for properly measuring standby loads \rightarrow DOE working group

Next steps – Begin new testing

 Test plan builds on data analysis to further focus on wind integration concepts and efficiency testing and evaluation

Thank You

Ben Gully benjamin.gully@dnvgl.com 614-734-6154

www.dnvgl.com

SAFER, SMARTER, GREENER