Solid State Composite Electrolyte

for Li-ion Batteries

Dr. Xingbo Liu

Professor, Associate Chair for Research

Mechanical and Aerospace Engineering Department

West Virginia University

September 23, 2015

- Dr. Imre Gyuk
- Drs. Vince Sprenkle & Xiaochuan Lu from PNNL
- My postdoc & student in WVU: Dr. Greg Collins, Mr. Yue Zhou

Background – Concerns of Liquid Electrolyte

- Dangers of explosion and leakage
- Separators and package limiting the miniaturization;
- etc.

Application of solid electrolyte in lithiumion batteries

Background – Solid State Li-ion Conductors

5

Grain Boundaries – Fast Diffusion Pathways

Is That Always True?

C.H. Chen, K. Amine/Solid State Ionics 144 2001 51–57

Developing Ceramics-Glass Composites with improved total conductivity and stability

$$\sigma_{tot} = 4e \left(\mu_{bulk} \exp^{-\frac{F+2e\Phi}{kT}} + \mu_{gb} \exp^{-\frac{F}{kT}} \right)$$

Crystal structure of Li_{3x}La_{2/3-x}TiO₃.

- Some loss of intensity for the smaller peaks but the major peaks near 33, 47 and 59 degrees remain unchanged.
- No observed shifting of peak position indicating no change to the LLTO composition during sintering with glass.

Glass = $Li_2O-B_2O_3$ (.40/.60)

	gb	diff	total
LLTO	0.000056	0.0011	0.000053
1%	0.000071	0.00094	0.000066
2%	0.00012	0.0009	0.000106
5%	0.000014	0.00085	0.000014
10%	0.0000001	0.00025	0.0000001

 $\begin{aligned} \mathsf{Glass} &= \mathsf{Li}_2\mathsf{O}{\text{-}}\mathsf{B}_2\mathsf{O}_3{\text{-}}\mathsf{Si}\mathsf{O}_2{\text{-}}\mathsf{Al}_2\mathsf{O}_3\\ (.40/.25/.35/0)\end{aligned}$

	gb	diff	total
LLTO	0.000056	0.0011	0.000053
1%	0.000084	0.001	0.000077
2%	0.00013	0.00094	0.000114
5%	0.000074	0.00088	0.000068
10%	0.000027	0.00059	0.000026

Glass = $Li_2O-B_2O_3-SiO_2-Al_2O_3$ (.40/.25/.30/.05)

	gb	diff	total
LLTO	0.000056	0.0011	0.000053
1%	0.00013	0.00105	0.000116
2%	0.00034	0.00089	0.000246
5%	0.000086	0.00074	0.000077
10%	0.000021	0.00034	0.000020

 $\begin{aligned} \text{Glass} &= \text{Li}_2\text{O-B}_2\text{O}_3\text{-SiO}_2\text{-Al}_2\text{O}_3\\ (.40/.25/.25/.10) \end{aligned}$

	gb	diff	total
LLTO	0.000056	0.0011	0.000053
1%	0.000047	0.00088	0.000045
2%	0.000031	0.00085	0.000030
5%	0.00008	0.00055	0.000008
10%	0.000003	0.00024	0.000003

Low grain boundary conductivity is the RLS for LLTO

Ceramic-glass composite can significantly improve the GB conductivity, thus overall conductivity.

So far, our best results show adding 2% Li₂O-B₂O₃-SiO₂-Al₂O₃ can improve GB conductivity by 6 times, and thus 5 times for overall conductivity

Patent: US 8,865,354 B2

Thank you!

Xingbo Liu

Mechanical and Aerospace Engineering

West Virginia University