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* L. Shaw and J. Shamie, “Sodium Based Hybrid Flow Batteries with Ultrahigh Energy Densities,” US Patent Application # 
14/157,180. 

Concept and Merits of Hybrid NFBs 
• Traditional vanadium redox flow 

battery 
 Charge 

Discharge 

 Charge 
Discharge 

 Charge 
Discharge 

Catholyte:   VO2+ + Cl- + H2O – e  VO2Cl + 2H+ εco=1.0 V 

Anolyte:                         V3+ + e V2+ εao=-0.25

Overall:    VO2+ + Cl- + H2O + V3+ VO2Cl + 2H+ + V2+ Eo=1.25 V

 Cell voltage ~1 V, one electron transfer 
redox reaction per active ion, and 
specific energy only ~35 Wh/kg  

* Li, et al, Advanced Energy Materials, 1, 394, 2011. 

• Novel Hybrid NFBs: unprecedented 
advantages 

• Novel Hybrid NFBs: Concept 

 High cell voltage (> 3 V) 

 Multiple electron transfer redox 
reactions per active ion  

 Ultrahigh energy densities (> 500 Wh/kg 
& > 600 Wh/L) 

 Low costs (avoid the use of expansive 
Nafion membranes, reduction in the 
amount of anolytes used, reduction in 
the use of storage materials and space, 
no pumping energy consumption in the 
anode)  



Room temperature hybrid cell design 

(a) 
Pt wire β”-Al2O3 tube 

Graphite 
Felt 

Stir Bar 

NaCs 

Na 

(b) 

Catholyte 

Metal Wire 

Na| β”-Al2O3 |Non-aqueous catholyte 
Na| β”-Al2O3 |Aqueous catholyte 

Anode:  
 a) NaCs: Na(at.)%=< 37% (heat to 90 ◦C before test) 
 b) Al or Cu foam-Na/NaTFSI-IL; 
Cathode: VOSO4- Na2SO4- HCl (BiCl3) 
Beta”-Al2O3 membrane: 1.4-1.5 mm thick, 1” dia disc 

Cathode:  
a) V(acac)3- NaPF6 or V(acac)3 – NaClO4 in acetonitrile  
b) Mn(acac)3- NaClO4 in Acetonitrile 
c) Tempo-NaPF6 in acetonitrile or PC 
Anode: NaxCs1-x (0.1<x< 0.37), heat to 200 ◦C before test 
Beta”-Al2O3 tube: 0.5 mm  thick,  3.5 cm2 effective area 
Solution stirred during cycling 
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Cell components:  
Catholyte: 0.01 M VOSO4 + 0.05 M 
Na2SO4 + 1.5 M HCl+ 0.002 M BiCl3 

Anode: Na/ NaTFSI/ BMPyrrTFSI 
Membrane: β”-Al2O3 disc (water 

resistable) 
Catholyte just stirred, not flowing 

V3+/4+ 

V4+/5+ 

V2+/3+ 

Bi0/3+ 

CV test:  
Working: Carbon foam 

Counter: Pt wire 
Ref.: Ag/AgCl  

Electrolyte: same as catholyte 

Scan rate: 10 mV/s 

 2 electron transfer for V ions 

 2 species multiple electron transfer 

 V is the main reactive species, Bi is the catalyst (Nano Lett., 2013, 13, 1330) 

 The low ratio to the theoretical capacity mainly due to the bad mass 
transportation 

Multiple electron transfer redox in aqueous catholyte 
based HNFBs 

L. Shaw, et al., Scientific Reports, 
5:11215, 2015, DOI:10.1038/srep11215 
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Multiple electron transfer redox in non-aqueous catholyte 
based HNFBs 
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CV with a 3-electrode setup 
Electrolyte: 0.05 M Mn(acac)3 in acetonitrile 
WE: Au; RE: Na in  b”-Al2O3 tube; CE:  tinned copper wire 
Scan rate: 250 mV/s  

• Na- V(acac)3 

• Na- Mn(acac)3 

Mn3+ /4+ 

residual 
H2O  
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Mn(Acac)3 Cycling oxidation of 
acetonitrile 

1st  

2nd  

2nd  

4th  3rd  

3rd  4th  

CE: 
1st 87.0%;  
2nd 93.2%;   
3rd 90.2%  

 Anode:  Na/ 0.1M  NaTFSI; Cathode: Mn(acac)3 -NaClO4 in CH3CN 
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Normalized Capacity (% of one electron transfer)  
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Cell components:  
• V(acac)3- NaPF6 in 

CH3CN  
• Na10Cs90 Anode 
• Solution unstirred 

for CV test  
• Scan rate:  25 mV/s 
• Capacities of redox 

reaction invloved in 
CV test reach the 
~75% of theoretical 
value. 

Mn3+ /4+ 

Mn2+ /3+ 

Mn2+ /3+ 

V3+/V4+ 
V2+/V3+ 



(a) (b) (c) (d) 

a 
b 

c d 

red triangle: pump-head tube failure  the 
cathode was blue triangle: refill catholyte, 
blue dash line: the corresponding photo-

taken time/points. 

Cycling performance of Na-V aqueous (V4+/V5+ redox) 
• Room Temp 

• 50 ◦C 

SOC: 0%,   20%,     40%,   > 60% 

starting 
catholyte: 

V4+ V5+ 

 Color change observed, indicating efficient redox reactions; 
 Cycling performance dramatically improved at 50 C 
 The conductivity of β”-Al2O3 membrane significant affect the cell performance  

J. Phys. D: Appl. Phys., Vol. 10, 1487 (1977). 



 
• Voltage range: 3.9V to 3V 
• Current: 1 mA 
• Initial Cycle: Highest charge capacity/ 

lowest discharge 
• Capacity increased initially before 

decreasing 
• 2 Plateaus on charge 

– Possible second reaction 
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V3+/V4+ redox 

V3+/V4+ & V2+/V3+ redox • Voltage range: 3.9V to 1.25V 
• Current: 1mA 
• Initial charge at higher voltage 
• 3 redox peaks on discharge 
• Redox at ~1.5V limited in 

reversibility 
• Capacity fade issues 

– 11th cycle shows recovery? 
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• In the 3.9 to 1.25V window there appears to be 3 voltage 
plateaus:  

– Charging: 1.65V, 3.5V, 3.8V 
– Discharging: 3.3V, 1.9V, 1.36V 

• In the 3.9 to 3V window there is only one plateau per segment 
– 3.75V charge, 3.3V discharge 

 
 

Cycling performance of Na-V nonaqueous: 100 cycles 
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 V(acac)3 - NaClO4 in CH3CN  

 V(acac)3 - NaPF6 in CH3CN  

The effect of supporting electrolyte (nonaqueous) 
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The effect of cathode electrode: graphite felts (aqueous) 

GF from CeraMaterials Inc. (CM) 

V3+/4+ 

V4+/5+ 

V2+/3+ 0.5 V 

0.5 V 

V4+/V5+ 

V5+/V4+ 

V2+/V3+ 

V2+/V3+ 

▵E ~ 0.75 V 

(a) (b) (c) 

GF from SGL Group GFD4.6 GFD5.0 

CV of VOSO4-Na2SO4 electrolyte using different GF 
working electrode: (a) glassy carbon and GF (C foam) 
from Ceramaterials; (b) GFD4.6 and (c) GFD5.0 from 
SGL group. Ag/AgCl, Pt wire are used as reference 
and counter electrode, respectively.  

 working electrodes: graphite 
felt GFD4.6 after annealed in 
air for 1.5 hours (a) and 7.5 
hours (b).  

 Nyquist plots for electrolyte 
0.05M VOSO4- 0.1M Na2SO4.  

 EIS were performed at OCV of 
the cell from 3-electrode setup 

 Different GF 

 Different annealing condition 
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(a) (b) 

O3 O2 O1 

R3 

R2 
R1 

Bi 

Bi 

GFD4.6_annealed 1.5 hr GFD4.6_annealed 
7.5hr 

GFD5.0_annealed 
7.5hr 

 

GFD4.6 (1.5hr 
anneal)_WO3-AC 

Test time after 
immersion 0hr 1hr 16.5hr 0hr 4hr 5.8hr 5.9hr 1.5hr 3.5hr 

Re (Ω) 6.45 5.71 10.17 35.33 30.66 33.03 35.07 14.72 12.75 

Rct (Ω) 6.32 8.51 12.20 9.50 14.89 4.59 10.36 5.83 9.82 

Rint (Ω) 2452 78.79 8.36 97.87 10.17 18.62 2.09 5.05 4.88 

Catalytic activity on different graphite felts (aqueous) 

 0.05M VOSO4- 0.1M Na2SO4- 0.002 M 
BiCl3– 1.5M HCl electrolyte.  

 3-electrode setup, in which GF, Ag/AgCl, 
and Pt wire were WE, RE, CE, 
respectively.  

The EIS were recorded after the 
electrodes soaked in solution for ca 4.5 
hours. 

EIS equivalent circuit fitting for some of the Nyquist plots by circuit R(QR)(QR)W 

 Catalyst: BiCl3 

 Catalyst: WO3-AC 
 0.05M VOSO4- 0.1M Na2SO4 electrolyte.  
WO3-AC nanoparticle coated graphite 

felts (GFD4.6) served as WE in a 3-
eletrode setup.  

EIS frequency 100 kHz to 0.1 Hz, under 
OCV. 



(a) (b) 

(c) (d) (111) 
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ZrO2 

β-Al2O3 

β”-Al2O3 

Samples 
Mem C 

only 

Fresh full 
battery 

(flowing) 

Charged 
70h_stopp
ed flowing 

Charged 
70h_reflowi

ng 

Re (Ω) 10.05 81.3 30.64 29.6 

Rct (Ω) 84.3 205.7 433.1 258.6 

Rgb (Ω) 228.4 1711 1981 2018 

Rint (Ω) 74.0 364.8 4734 4026 

Membrane RT conductivity and stability (for aqueous) 

Samples 
Mem A 

(2 months) 
Mem B 
(new) 

Mem C 
(new) 

Mem D 
(new) 

Re (Ω) 30.41 5.855 10.05 6.43 

Rct (Ω) 875.9 64.97 84.3 59.6 

Rgb (Ω) 1601 374.4 228.4 501.1 

Rint (Ω) 344.1k 56.34 74.0 1.001 

σ (S/cm, based 
on Rgb) 

2.30 × 10-5 9.84 × 10-5 1.61 × 10-4 7.35 × 10-5 

Equivalent circuit simulation results for β”-Al2O3 

membranes in which circuit R(Q(R(Q(R(CR))))) was utilized. 

 Mechanically Robust and thin β”-
Al2O3 membrane 

 Water Resistant and long life β”-
Al2O3 membrane 

 High ionic conductivity Na ion 
based solid eletrolyte 

Better Sodium-Ion Exchange 
Membranes 

Challenges 
Equivalent circuit simulation results in which circuit R(Q(R(Q(R(CR))))) was utilized. 



Progress to Date 
• Demonstrate feasibility of two electron transfer redox reactions per V ion in HNFBs with 

aqueous and nonaqueous catholytes. 
• Good cyclic stability for Na-V aqueous over 1e transfer, > 30 cycles 
• Good cyclic stability for Na-V, Na-Mn, and Na-Tempo nonaqueous batteries , 100 cycles 

achieved 
• High performance of Na-V nonaqueous battery with two V redox reactions. 
• Optimize the battery performance from the aspects of electrode materials and modification 

(catalysts deposition), electrolyte composition, membrane surface coating, etc..  
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Ongoing and Future work 
• Identify the active species in Na-V nonaqueous battery 
• Suppress the capacity decay in Na-V and Na-Tempo nonaqueous battery 
• Develop new Na-I2 batteries with NaSICON membrane 
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