

Tehachapi Wind Energy Storage Project

U.S. DOE/OE Energy Storage Program Peer Review EESAT 2015 Technical Conference September 21–24 2015

Grant Davis

Advanced Energy Storage

Southern California Edison

Overview

- Battery
 - Li-ion
 - 32 MWh usable
 - Manufactured by LG Chem
- Power conversion
 - 9 MVA
 - 12 kV connected
 - Manufactured by ABB

- Located near Tehachapi, in California's largest wind resource area
- 4,500 MW of wind development potential, driving grid infrastructure

Facility

- Installed at SCE's Monolith Substation
- Connected at subtransmission level through a 12–66 kV transformer

02/09/2010 – Project started

- 10/13/2010 DOE contract signed
- 02/28/2011 Original vendor contract signed
- 10/16/2012 Original vendor filed for bankruptcy
- 03/27/2013 New vendor contract signed
- 07/18/2014 System commissioning & acceptance completed; start of M&V
- 12/31/2014 First technical performance report delivered

04/21/2015 – PCS MV transformers replaced

Objectives

- Test a large-scale BESS as a system reliability and market-driven device
 - Dual control interfaces
 - 13 operational uses
- Integrate battery storage technology into SCE's grid
 - Test and demonstrate smart inverter technology
 - Assess performance and life cycle of grid-connected lithium-ion BESS
 - Expand expertise in energy storage technologies and operations

8 core tests

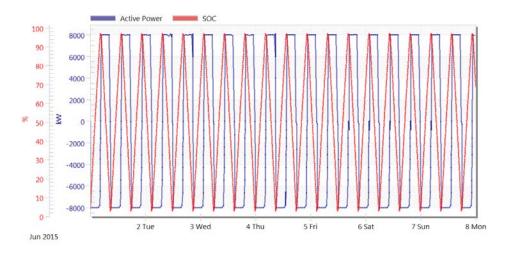
Under grid operator control (EMS)

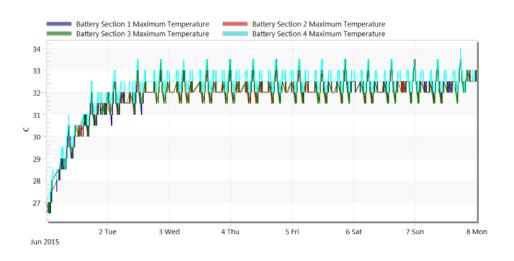
- 1. Voltage regulation
- 2. Voltage regulation + any other mode
- 3. Charge under high line load, discharge under low line load
- 4. Charge off peak, discharge on peak
- 5. Smooth renewables

Under market control (GMS)

- 6. Frequency regulation
- 7. Energy & spin/non-spin reserves
- 8. Follow energy price signal

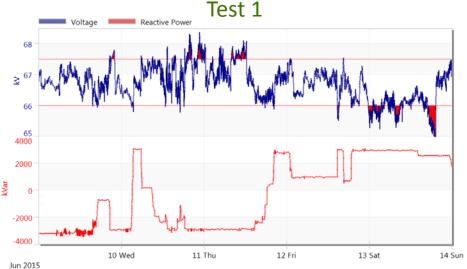
M&V schedule

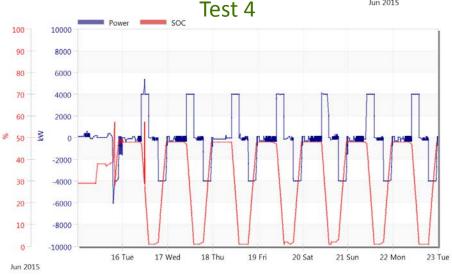

- Late 2014, May 2015: Characterization testing – Constant cycling performance, round trip efficiency
- June–July 2015: EMS short-term testing – Core tests 1, 2, 3, 4, 5
- September 2015: GMS short-term testing – Core tests 6, 7, 8
- October 2015–June 2016
 - (2) EMS long-term testing periods
 - (2) GMS long-term testing periods


System characterization testing, May 2015

- 4 MW cycle test
 - 1 cycle per day with a rest at 30 % SOC
- 8 MW cycle test
 - 2 cycles per day with a rest at 30 % SOC
- 8 MW cycle test w/o rest
 - Back-to-back cycling at full power

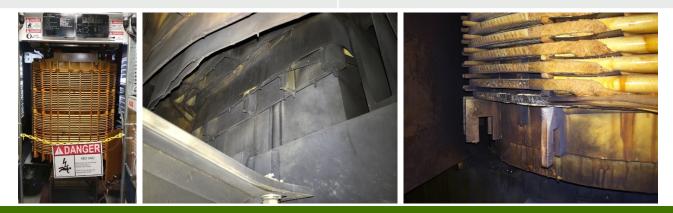
Auxiliary Loads	Average RTE
Not included	88.6 %
Included	87.4 %


For 8 MW cycle test w/o rest, as measured at 66 kV. All results are preliminary. Final results will be presented in the TPR.



EMS short term testing, June–July 2015

- Test 1: Voltage regulation
 - System dispatched correctly
 - Limited effect due to size of system relative to bus conditions
- Test 4: Charge off peak, discharge on peak
 - Schedule-based dispatch
 - System operated correctly with one PCS off line



- Test 3: Charge under high line load, discharge under low line load
 - System dispatched correctly
 - Limited effect due to size of system relative to line loading
- Test 5: Smooth renewables
 - Difficulty in selecting proper renewable plant output scaling and maximum allowable ramp rates for optimal operation

Operational issues & takeaways

Issues	Takeaways
PCS MV transformer failure & replacement	 Use off-the-shelf designs Specify quick and easy modular component replacement
Substation availability	• Permanent interconnection required for long-term operation
PCS temperature trips	Need for remote filter monitoring
Battery module failures & replacements	 Need for additional level of BMS power saving mode Consider spare module storage and maintenance

Southern California Edison

