DTE Energy Implementation of Community Energy Storage System for Grid Support

Haukur (Hawk) Asgeirsson, PE
Manager - Power Systems Technologies
September 23, 2015
Disclaimer

DOE OE supported under award DE-OE0000229

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."
Project Overview

• First large utility scale community energy storage (CES) project on one circuit (1 MW of storage)
• Aggregation of CES using a Distributed Resources System Operation Center (DERMS)
• Using utility industry protocol (DNP3)
• Determining economic value of storage on a distribution circuit in MISO market
• Built and deployed secondary use EV batteries
• Integration of energy storage and PV
Project Team Members & Roles

<table>
<thead>
<tr>
<th>Team Member</th>
<th>Role</th>
</tr>
</thead>
</table>
| **DTE Energy** | • Project lead
• Utility participant for CES field demo
• Project reporting |
| **S&C** | • CES Unit suppliers
• Factory acceptance testing
• Technical Support |
| **DNV-GL** | • CES functional testing
• Economic analysis and reporting
• Technical Support |
| **edd** | • Circuit model development for baseline
• Reliability & economic dispatch algorithm |
| **Chrysler** | • Durability & conditioning testing of EV battery
• Secondary use EV battery supplier
• Provide baseline data for EV battery |
| **NEXTENERGY** | • Investigation of regulatory issues surrounding energy storage and renewable energy
• DOD applications |
| **National Grid** | • Utility technical advisor |
CES System Overview

• Eighteen new units installed
 – One was installed in training yard
 – Developed engineering documents, installation and operating procedures
 – 17 on one distribution circuit
 – IEEE 1547 certification
• Two repurposed EV battery systems demonstrating secondary-use application
• 500 kW of storage co-located with 500 kW PV

<table>
<thead>
<tr>
<th>CES Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>25 kW</td>
</tr>
<tr>
<td>Energy</td>
<td>50 kWh</td>
</tr>
<tr>
<td>Voltage</td>
<td>240/120V AC</td>
</tr>
<tr>
<td>Cells</td>
<td>Li-Ion</td>
</tr>
</tbody>
</table>
CES Field Installation

• 18 new units installed in 2013
 – One in Training Yard
 – 17 on one circuit
• Winter reliability problems
• Desire to test as an aggregated fleet
• Uses case testing started in June 2014
Large Storage and PV Integration

- Large storage system with PV
 - 500 kW PV
 - 500 kW Li-ion Storage-(250kWh)
- Located at MCCC
- Common 480 volt bus with 2-250 kW PV inverters
- 500 kVA Trf at 13.2 kV - Export limited
Test Distribution Circuit

Substation

MCCC Solar & Large Storage

8 CES units installed

500 kW PV
500 kW/250 kWh
Li-ion storage
480 Volt/13.2 kV

9 CES units installed

CES Parameters – S&C Electric
Li-ion Kokam cells
Power = 25 kW
Energy = 50 kWh
Voltage = 120/240 Vac

Circuit 13.2k
Peak Load = 10.8MVA 2011
Customers = 2522
Residential = 2413
Commercial = 105
Industrial = 4
All storage systems individually addressable or in a fleet hub command mode using DNP3
CES Communication

• DNP3 Master in DR-SOC
• Cell APN communication
• CES Display includes
 • Utility load and voltage
 • Customers load and voltage
 • Inverter data
 • Battery data
 • System Status and Alarms
• Graph can display any variable
CES Test Plan - Modes of operation

Demonstrated capabilities
- Voltage support
- VAR support
- Islanding during outages
- Frequency regulation (AGC)
- Renewable energy time shift
- Circuit peak shaving
- Discharge during high LMP price
- Circuit model commands (DEW Services)

<table>
<thead>
<tr>
<th>REQUIREMENT#</th>
<th>TEST PERFORMED</th>
<th>COMPONENT TESTED</th>
<th>Mode of Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRSOC-CES-001</td>
<td>Data usage test</td>
<td>Cell. communications</td>
<td>Stand-by / Hub Command</td>
</tr>
<tr>
<td>DRSOC-CES-002</td>
<td>CES maintains Minimum Reserve Margin</td>
<td>CES controller logic</td>
<td>Hub Command</td>
</tr>
<tr>
<td>DRSOC-CES-003</td>
<td>CES unit will operate safely when unit is at 100% SOC and is given a charge command.</td>
<td>CES controller logic</td>
<td>Hub Command</td>
</tr>
<tr>
<td>DRSOC-CES-004</td>
<td>CES unit will operate safely when kW and kvar setpoints cause unit to exceed discharge KVA rating.</td>
<td>CES controller logic</td>
<td>Hub Command</td>
</tr>
<tr>
<td>DRSOC-CES-005</td>
<td>CES unit will operate safely when kW and kvar setpoints cause unit to exceed discharge KVA rating.</td>
<td>CES controller logic</td>
<td>Hub Command</td>
</tr>
<tr>
<td>DRSOC-CES-006</td>
<td>DRSOC Hub will dispatch a reasonable set-point when algorithms command a kW set-point that exceeds unit charge rating.</td>
<td>DRSOC Hub</td>
<td>Hub Command</td>
</tr>
<tr>
<td>DRSOC-CES-007</td>
<td>DRSOC Hub will dispatch reasonable set-point when algorithms command a kW set-point that exceeds unit discharge rating.</td>
<td>DRSOC Hub</td>
<td>Hub Command</td>
</tr>
<tr>
<td>DRSOC-CES-008</td>
<td>DRSOC Hub will distribute fleet kW charge or discharge across all units based on SOC of each unit.</td>
<td>DRSOC Hub</td>
<td>Hub Command</td>
</tr>
<tr>
<td>DRSOC-CES-009</td>
<td>CES Efficiency</td>
<td>CES Efficiency</td>
<td>Hub Command</td>
</tr>
<tr>
<td>DRSOC-CES-010</td>
<td>DRSOC Hub will issue commands per a set schedule to produce “Renewable Energy Time Shift”</td>
<td>DRSOC Hub</td>
<td>Hub Command</td>
</tr>
<tr>
<td>DRSOC-CES-011</td>
<td>DRSOC Hub will issue commands per a set schedule to produce “Electric Energy Time Shift”</td>
<td>DRSOC Hub</td>
<td>Hub Command</td>
</tr>
<tr>
<td>DRSOC-CES-012</td>
<td>DRSOC Hub will send commands to CES units based on simulated AGC signal</td>
<td>DRSOC Hub</td>
<td>AGC</td>
</tr>
<tr>
<td>DRSOC-CES-013</td>
<td>DRSOC Hub will discharge CES fleet to maintain a maximum kW at the circuit feeder.</td>
<td>DRSOC Hub</td>
<td>Peak-Shifting</td>
</tr>
<tr>
<td>DRSOC-CES-014</td>
<td>Charge when needed for reserve capacity</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
<tr>
<td>DRSOC-CES-015</td>
<td>Discharge when price is high and unit is not "needed"</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
<tr>
<td>DRSOC-CES-016</td>
<td>Do not charge when would cause overload</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
<tr>
<td>DRSOC-CES-017</td>
<td>Do not discharge when would violate reserve capacity</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
<tr>
<td>DRSOC-CES-018</td>
<td>Resolve transformer overload by discharging</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
<tr>
<td>DRSOC-CES-019</td>
<td>Resolve low voltage by supplying vars</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
<tr>
<td>DRSOC-CES-020</td>
<td>Resolve high voltage by absorbing vars</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
<tr>
<td>DRSOC-CES-021</td>
<td>Resolve low voltage by discharging</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
<tr>
<td>DRSOC-CES-022</td>
<td>Resolve single-phase primary overload by discharging only batteries on that phase while charging others (low price)</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
<tr>
<td>DRSOC-CES-023</td>
<td>Currently discharging w/ no overload, but do not stop discharging because discharging is preventing an overload.</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
<tr>
<td>DRSOC-CES-024</td>
<td>Forecasted overload alert</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
<tr>
<td>DRSOC-CES-025</td>
<td>Minimum profit margin test</td>
<td>DEW Service</td>
<td>DEW</td>
</tr>
</tbody>
</table>
Use case: Circuit Peak Shaving

Use case: DEW Economics Mode

Orange curve battery fleet kW (left y-axis). Blue curve real time LMP $/MWh (right y-axis).

Test Started at 10 AM
Repurposed EV batteries

• Six end of life automotive battery packs – Fiat 500e
• Two battery system configurations installed
 ▪ 25 kW - 47 kWh and 94 kWh
• One CES tested at DNV GL
Remaining work & some lessons learned

• Remaining work
 – Using EPRI Energy Storage Valuation Tool to perform sensitivity analysis
 – Initial draft report in October
 – Final report to DOE early December

• Lesson learned
 – Change in energy storage supplier
 – Technology reliability maturity (TRL 6-7) – Automotive example
 – Reliability of hardware and software
 – Integration of communication systems
 – Physical location of CES
Backup slides
Sample test reports

• DNV KEMA Powertest
 – Round Trip Efficiency
 – Peak Shaving profile test
 – Frequency Regulation Profile Test
 – Islanding Test
 – Harmonic Analysis
• S&C Electric commissioned IEEE 1547 certification – Passed
 – Removed conditional Relay Engineering approval
• DNV KEMA cost effectiveness reports on circuit
 – Frequency Regulation
 – Peak Shaving
• DNV GL Battery degradation testing
CES Communication Hub Command

100 kW Charge
DERMS – Distributed Energy Resource Management System

- Distributed Resources System Operation Center (DR-SOC)
- Created a DNP3 master for distributed energy storage system
- Smart inverter functionality