Next Generation Battery Alternative to Lithium Ion: Magnesium Ion Based Batteries

Esther S. Takeuchi1,2,3, Amy C. Marschilok1,2, Kenneth J. Takeuchi1,2

\textit{SUNY Distinguished Professor}
\textit{Chief Scientist}

Chemistry1
Materials Science and Engineering2
Stony Brook University (SUNY)

Energy Sciences3
Brookhaven National Laboratory
Motivation

This project targets some unique needs of **large scale power storage**:

1) reduced cost
2) low environmental impact
3) scalability
4) reversibility
5) capacity retention

Utilize **earth abundant, low cost elements** with minimal environmental impact as battery materials.

Exploit magnesium due to ~1,000X higher natural abundance than lithium and ~5,000X higher abundance than lead.

<table>
<thead>
<tr>
<th></th>
<th>Mg</th>
<th>Li</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>ionic radius, Å</td>
<td>0.72</td>
<td>0.76</td>
<td>1.19</td>
</tr>
<tr>
<td>melt. pt., °C</td>
<td>650</td>
<td>181</td>
<td>328</td>
</tr>
<tr>
<td>mAh/g</td>
<td>2205</td>
<td>3862</td>
<td>259</td>
</tr>
<tr>
<td>mAh/cc</td>
<td>3837</td>
<td>2047</td>
<td>2926</td>
</tr>
<tr>
<td>$/lb</td>
<td>$1.12</td>
<td>$28</td>
<td>$1.68</td>
</tr>
<tr>
<td>$/kWh</td>
<td>$2.5</td>
<td>$58</td>
<td>$31</td>
</tr>
</tbody>
</table>
Approach to Mg Battery System
The necessity of systems level understanding

M. Huie, D. Bock, E. Takeuchi, A. Marschilok, K. Takeuchi
Cathode: Mg$_{0.1}$V$_2$O$_y$•1.8H$_2$O

Material synthesis

Two-Step Synthesis

Ion exchange

Sol gel reaction

Mg$_x$V$_2$O$_y$ was prepared by a two-step **scalable process** where the first step was an ion exchange reaction of MgV$_2$O$_6$ followed by a sol gel reaction.

X-ray powder diffraction pattern of Mg$_x$V$_2$O$_5$ (x = 0.11, 0.18)

Schematic of Mg$_x$V$_2$O$_5$ structure

Cathode: Mg$_{0.1}$V$_2$O$_y$•1.8H$_2$O
Results of voltammetry: significant solvent effect

De-solvation energy of Mg$^{2+}$ in EC, DEC, PC > CH$_3$CN
Slow scan voltammetry at 1E-4 V/s.
working = Mg$_{0.1}$V$_2$O$_5$, reference = Ag/Ag$^+$, auxiliary = Pt.

Cathode: $\text{Mg}_x \text{V}_2\text{O}_5 \cdot n\text{H}_2\text{O}$

Galvanostatic cycling in Mg electrolyte

$\text{Mg}_{0.11} \text{V}_2\text{O}_5 \cdot 2.35\text{H}_2\text{O}$ can deliver ~ 140 mAh/g in 0.5 M Mg(TFSI)$_2$. Capacity increased in the first cycles, then stable at ~ 140 mAh/g.

$\text{Mg}_{0.11} \text{V}_2\text{O}_5 \cdot 2.35\text{H}_2\text{O}$ capacity $> \text{Mg}_{0.18} \text{V}_2\text{O}_5 \cdot 2.35\text{H}_2\text{O}$

J. Yin, A. Marschilok, K. Takeuchi, E. Takeuchi

In preparation for publication
Mg-birnessite was prepared by a two-step scalable process:

1. Room temperature precipitation reaction for Na-birnessite
2. Followed by ion exchange

XRD pattern of Mg-birnessite with standard index

- Monoclinic phase (space group C 2/m)
- \(a = 5.050 \, \text{Å}, \ b = 2.846 \, \text{Å}, \ c = 7.054 \, \text{Å}, \ b = 96.63^\circ \)
- Pink, Mn; Red, O; Yellow, Mg; Blue, \(H_2O \).

J. Yin, A. Marschilok, K. Takeuchi, E. Takeuchi
Submitted for publication
Cathode: Mg-birnessite
Cyclic voltammetry in Mg electrolyte, new electrolyte

Electrolyte:
0.4 M Mg(TFSI)$_2$ and 0.5M Dipropylene glycol dimethyl ether (Dipro glyme) in Acetonitrile

Glyme with higher boiling point and lower toxicity than many ethers
Provides improved Mg$^{2+}$ coordination and improved performance

working = Mg-birnessite, reference=Ag/Ag$^+$,
Electrolyte: 0.4 M Mg(TFSI)$_2$ acetonitrile, water content: Mg/water=1/6

Patent disclosure filed
Cathode: Mg-birnessite
Cyclic voltammetry in Mg electrolyte: impact of water

Electrolyte: 0.4 M Mg(TFSI)_2 and 0.5M Dipropylene glycol dimethyl ether in Acetonitrile with added water

Best Ratio: Mg^{2+}/H_2O = 1/6
Cathode: Mg-birnessite
Galvanostatic cycling in Mg electrolyte

working = Mg-birnessite, reference=Ag/Ag⁺, Electrolyte: 0.4 M Mg(TFSI)₂ and dipropylene glycol dimethyl ether, acetonitrile, water content: Mg/water=1/6. Begins to stabilize at ~ 80 mAh/g.

Current: 0.2 C
Tunnel structured Manganese Oxide

$M_xMn_8O_{16}$, $M = Ag, K$

Ag-OMS-2:
$Ag_{1.22}Mn_8O_{16} \cdot 2.90H_2O$

K-OMS-2:
$K_{0.68}Mn_8O_{16} \cdot 0.88H_2O$

Low temperature, scalable, aqueous based syntheses
Cathode: $M_xMn_8O_{16}$ $M = Ag, K$

Cyclic voltammetry in Mg electrolyte

0.5 M Mg(TFSI)_2 and $0.5 \text{ M dipropylene glycol dimethyl ether in acetonitrile}$

Improved reversibility with water in electrolyte $Mg^{2+}/ H_2O = 1/6$

J. Huang, A. Poyraz, A. Marschilok, K. Takeuchi, E. Takeuchi, Submitted for publication
Cathode: Ag-OMS-2
Galvanostatic cycling in water containing electrolyte

The capacity of initial cycles is > 150 mAh/g
Stabilizes at ~ 80 mAh/g
Voltage versus Mg is 2.6 V
Cathode: K-OMS-2
Galvanostatic cycling in water containing electrolyte

Higher initial capacity (250 mAh/g)
Capacity stabilizes >150 mAh/g
High coulombic efficiency
Voltage versus Mg is 2.6 V
Low cost material
Mg-ion Hybrid Electrolytes: non-flammable

<table>
<thead>
<tr>
<th>Ionic Liquid Name</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Methyl-1-Propyl-Piperidinium bis(trifluoromethylsulfonyl)imide</td>
<td>1M1PPi-TFSI</td>
</tr>
<tr>
<td>1-Butyl-1-Methyl-Piperidinium bis(trifluoromethylsulfonyl)imide</td>
<td>1B1MPPi-TFSI</td>
</tr>
<tr>
<td>1-Ethyl-1-Methyl-Pyrrolidinium bis(trifluoromethylsulfonyl)imide</td>
<td>1E1MPyrr-TFSI</td>
</tr>
<tr>
<td>1-Methyl-1-Propyl-Pyrrolidinium bis(trifluoromethylsulfonyl)imide</td>
<td>1M1PPyrr-TFSI</td>
</tr>
<tr>
<td>1-Butyl-1-Methyl-Pyrrolidinium bis(trifluoromethylsulfonyl)imide</td>
<td>1B1MPyrr-TFSI</td>
</tr>
<tr>
<td>1-Ethyl-3-Methyl-Imidazolium bis(trifluoromethylsulfonyl)imide</td>
<td>1E3MIm-TFSI</td>
</tr>
<tr>
<td>1-Methyl-3-Propyl-Imidazolium bis(trifluoromethylsulfonyl)imide</td>
<td>1M3PIm-TFSI</td>
</tr>
<tr>
<td>1-Butyl-3-Methyl-Imidazolium bis(trifluoromethylsulfonyl)imide</td>
<td>1B3MIm-TFSI</td>
</tr>
<tr>
<td>1-Ethyl-3-Methyl-Pyridinium bis(trifluoromethylsulfonyl)imide</td>
<td>1E3MPy-TFSI</td>
</tr>
<tr>
<td>1-Propyl-3-Methyl-Pyridinium bis(trifluoromethylsulfonyl)imide</td>
<td>1P3MPy-TFSI</td>
</tr>
<tr>
<td>1-Butyl-3-Methyl-Pyridinium bis(trifluoromethylsulfonyl)imide</td>
<td>1B3MPy-TFSI</td>
</tr>
</tbody>
</table>

Combine ionic liquids with co-solvents. IL provides safety, co-solvent improves conductivity.

- Acetonitrile (ACN)
- Di(propylene glycol) dimethyl ether

[Stony Brook University logo]

M. Huie, C. Cama, A. Marschilok, K. Takeuchi, E. Takeuchi
In preparation for publication
Hybrid IL-Acetonitrile Electrolytes

Conductivity

Max conductivity at 40% IL

Unsaturated cations and smaller ring size → Better conductivity

0.5 M Mg(TFSI)_2 decreases conductivity ~50%
Hybrid IL-DPGME Electrolytes

Conductivity

<table>
<thead>
<tr>
<th>IL</th>
<th>Conductivity (mS/cm)</th>
<th>0.5 M salt</th>
<th>% IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M1PPyrr-TFSI</td>
<td>5.5</td>
<td>2.5</td>
<td>60</td>
</tr>
<tr>
<td>1M1PPi-TFSI</td>
<td>4.1</td>
<td>1.9</td>
<td>60</td>
</tr>
<tr>
<td>1P3MPy-TFSI</td>
<td>5.4</td>
<td>2.5</td>
<td>60</td>
</tr>
</tbody>
</table>

About less conductive than ACN solutions

Unsaturated cations and smaller ring size → Better conductivity

0.5 M Mg(TFSI)$_2$ decreases conductivity
Hybrid IL Electrolytes
Voltage Window of Stability

0.5 M Mg(TFSI)$_2$
All electrolytes >3.0 V window of stability for 0.1 mA/cm2 limit
Saturated cation ring → larger window

IL/Acetonitrile

IL/DPGME

![Graph showing voltage window of stability for different electrolytes and current limits.](image)
Hybrid IL Electrolytes
Cathode: Mg\textsubscript{0.07}V\textsubscript{2}O\textsubscript{5}

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>E_{ox} (V)</th>
<th>E_{red} (V)</th>
<th>$\Delta(E_{\text{ox}}-E_{\text{red}})$</th>
<th>I_{ox} (mA/g)</th>
<th>I_{red} (mA/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M1PPi-TFSI/Acetonitrile</td>
<td>1.00</td>
<td>-0.38</td>
<td>1.38</td>
<td>83.9</td>
<td>-60.3</td>
</tr>
<tr>
<td>1M1PPi-TFSI/DPGME</td>
<td>0.20; 0.74</td>
<td>0</td>
<td>0.20; 0.74</td>
<td>7.5; 7.8</td>
<td>-4.3</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>0.80</td>
<td>-0.05</td>
<td>0.85</td>
<td>43.5</td>
<td>-32.8</td>
</tr>
</tbody>
</table>

DPGME → Lower current, less polarization
IL/acetonitrile → Higher peak current
Anode: electrodeposited Bi
Bi on CNT substrate

CNT substrate

Bi Deposition

Bi-CNT was prepared by electrodeposion of Bi on CNTs
Enables use of new electrolytes
Capacity ~ 180 mAh/g.

Scanning Electron Microscopy (SEM) of
CNT (L) & Bismuth-coated CNTs (R).

X-ray powder diffraction of Bi on CNT

R. DiLeo, Q. Zhang, A. Marschilok, K. Takeuchi, and E. Takeuchi,
Summary

Cathode

High voltage cathode systems that function in non-corrosive Mg$^{2+}$ electrolyte demonstrated. Scalable, low temperature syntheses.

$\text{Mg}_{0.1}V_2O_y > 140 \text{ mAh/g}$

$\text{Mg}_x\text{MnO}_y \sim 80 \text{ mAh/g}$

$\text{M}_x\text{Mn}_8\text{O}_{16} \quad M = \text{Ag, K} \sim 150 \text{ mAh/g}$

Anode

Bi tunable electrodeposition based preparation on CNT substrate $> 180 \text{ mAh/g}$ in non-corrosive Mg$^{2+}$ electrolyte

Electrolyte

H-IL hybrid ionic liquid-Mg salt non-flammable electrolytes with appropriate conductivity, and voltage window for Mg based system
Intellectual Property

2011: Composite electrodes, methods of making, and uses thereof
2013: Electrode materials for Group II cation based batteries
2014: Hybrid electrolytes for group II cation based batteries
2015: High voltage cathode materials for group II cation based batteries
Acknowledgements

Dr. Imre Gyuk
Energy Storage Program Manager
Office of Electricity Delivery and Energy Reliability

Dr. Paul Clem
Manager, Electronic, Optical and Nano Materials
Sandia National Laboratories

The authors gratefully acknowledge support from the Department of Energy, Office of Electricity, administered through Sandia National Laboratories, Purchase Order #1275961.
Collaborators and Participants

Kenneth J. Takeuchi, Ph.D.
SUNY Distinguished Teaching Professor

Amy C. Marschilok, Ph.D.
Research Associate Professor

Qing Zhang
Matt Huie
Christina Cama
Jiefu Yin
Jianping Huang

Corey Schaffer
Shu Han Lee
Chia-Ying Lee

Roberta DiLeo, Ph.D.