Highly Efficient, High Power Density GaN-based DC-DC Converters for Grid-Tied Energy Storage Applications

Department of Energy Phase II SBIR

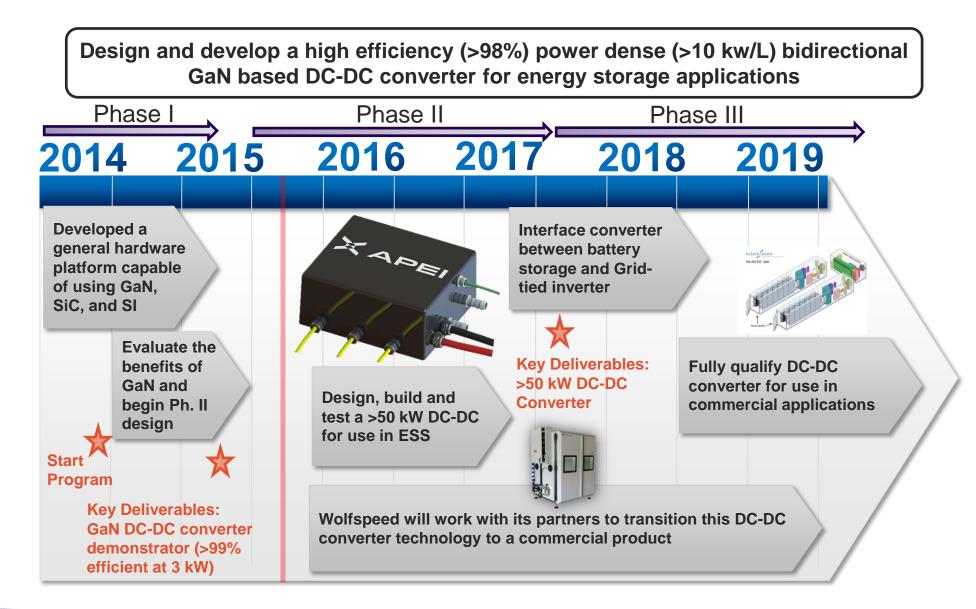
APEI

Daniel Martin, PhD Senior Staff Engineer, Switched-Mode Power Supplies September 22, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-7685 C

APEI is now Wolfspeed

ACKNOWLEDGMENTS


I would like to thank **Dr. Imre Gyuk** of the DOE Energy Storage Program for funding this work and **Dr. Stan Atcitty** for his technical contributions.

SBIR PROGRAM GOALS AND TIMELINE

PROGRAM TARGET APPLICATIONS

- Residential and light commercial (<10 kw)
 - Renewable energy storage and interface converter
 - Hybrid Electric/Electric vehicle
- Industrial (10 kW to MW scale)
 - Renewable energy storage and interface converter
 - Uninterruptible power supplies
 - Hybrid Electric/Electric heavy vehicle (locomotives, heavy machinery)

• < 900 V – GaN set to grow 2kV -> 3.3 kV 6% greatly in this area. GaN has Medium Voltage

High Voltage

1.2kV -> 1.7kV

10%

POWER ELECTRONICS AND ENERGY STORAGE MARKETS

the potential to offer higher performance and lower cost.

Power Electronics Market

• > 1.2 kV - Currently, ideal Area for SiC; GaN research being done to penetrate this market

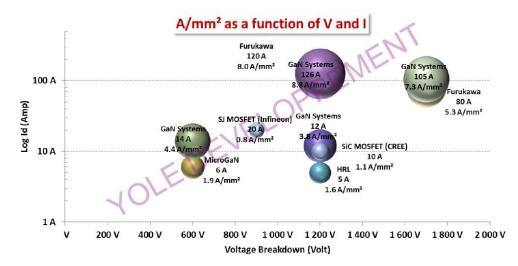
Energy Storage Market

 The global energy storage market is expected to grow to \$400 B by 2020 [1]

[1]. http://climatecrocks.com/2013/07/20/more-on-energy-storage-breakthrough-batteries/

Very High Voltage > 3.3k\

Source: Yole Développement

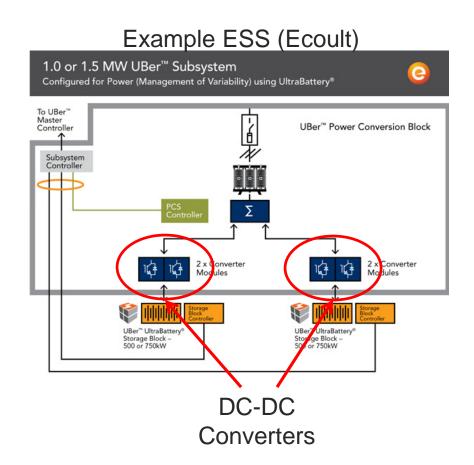

Low Voltage

0->900V 80%

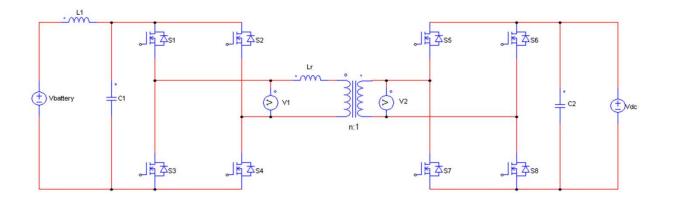
Power electronics market split by voltage range

6

ADVANTAGES OF GAN



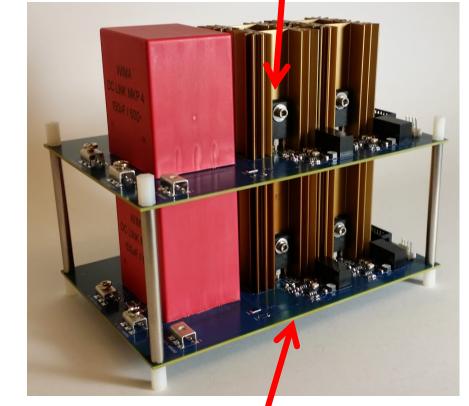
- Extremely fast switching which enables:
 - Smaller/less expensive filtering elements
 - Lower switching loss increases efficiency and reduces cooling requirements
- Cascode arrangement enables:
 - Simple drive requirements (Si MOSFET front end)
 - Usable anti-parallel diode


NEED FOR HIGH EFFICIENCY DC-DC CONVERTERS IN ENERGY STORAGE SYSTEMS

- High efficiency DC-DC converters provide critical functionality in energy storage systems
 - They provide galvanic isolation (safety)
 - They are inherently capable of providing circuit breaker functionality
 - They interface the inverter to the batteries
 - They control the charging/discharging of batteries
- High efficiency is critical and can significantly decrease wasted energy, operational cost, and payback period

TECHNICAL APPROACH

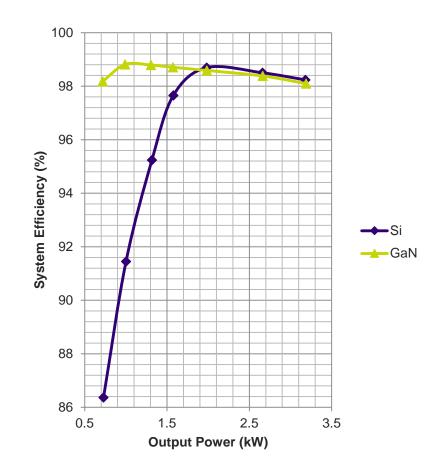
- Dual Active Bridge (DAB) topology
 - Power bidirectional
 - Soft switching topology decreases switching loss
 - High frequency isolation transformer enables galvanic isolation in a small volume
 - Scalable from 100's of watts to MWs



HARDWARE PROTOTYPE

100 kHz Ferrite Transformer 8 kW – 328 grams

60 Hz Si-Steel Transformer 7.5 kVA – 150 lbs


Primary Side Full Bridge

Secondary Side Full Bridge

PHASE I RESULTS

- GaN proved to be superior to state of the art super junction Si FETs
- Improved weighted efficiency (CEC efficiency) by 2.7% (95.66% for Si and 98.37% for GaN)
- GaN can further dominate by lowering conduction loss via power module

PHASE II PLANS

- Develop a custom power module around GaN capable of >250 A and >600 V
- Use the developed module to create a scalable 50 kW power processing unit for energy storage units (series/parallel capability for use in higher voltage/higher power applications)
 - >50 kHz operation to enable small magnetic components
 - >98% efficiency to reduce cooling requirements
- Explore advanced magnetic based control strategies to improve system efficiency at light loads

SUMMARY

- High efficiency bidirectional DC-DC converters are critical for current and future energy storage systems
- GaN transistor technology can greatly improve efficiency compared to Si technology
- The DC-DC converter demonstrator deliverable for Phase I exceeded all initial targets
- GaN power modules required to achieve higher power levels are being developed in this effort
- A high power (>50 kw) converter is being developed in the Phase II utilizing a custom GaN power module to enable higher efficiency energy storage units

Leading the Pack...

A CREE COMPANY