6.5KV SILICON CARBIDE JFET SWITCH MODULE FOR HIGH DENSITY POWER CONVERSION SYSTEMS

John L. Hostetlera, Xueqing Lia, Peter Alexandrova, Anup Bhallaa, Martin Beckerb, Jerry Sherbondyc

aUnited Silicon Carbide, Inc., Monmouth Junction, NJ
bPrinceton Power Systems, Lawrenceville, NJ
cPowerex, Youngwood, PA
Contents

- Project Overview
- Motivation
 - Why SiC 6.5 kV JFETs?
- 6.5 kV Applications
- 6.5 kV Enhancement Mode JFET
- Power Module Overview
- Buck Converter Testing
- Summary
Project Overview

2012	2013
Q3 | Q4
Q1

Phase I

2013	2014	2015
Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2

Phase II

Device Design | Epitaxial Growth Development | Module Design | 6.5 kV Device Fabrication | Application Study | Module Assembly | Converter Testing

"Molecules to Megawatts"
SiC JFETs can address 6.5kV applications, but with 20X lower losses than 6.5kV Si-IGBTs

- Low Losses Enable High Frequency Switching
- Enables Higher System Power Density

\[
\frac{Power}{Volume} \approx frequency
\]
Example: Inductors

6 kHz
~800uH, 60 Amps, 20 lbs

20 kHz
~200uH, 55 Amps, 3 lbs

~10X Volume Reduction in Component!
Example: 30kW SiC Inverter

- Power Density Increase by >3X due to faster switching – From 6kHz to 20kHz
- Peak Efficiency Increase of ~ 2%
- Power stage uses USCi 1200V SiC-JFET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{DS(on)}$</td>
<td>80</td>
<td>mΩ</td>
</tr>
<tr>
<td>V_{DS}</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>T_{max}</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
The 6.5kV JFET module targets higher power (MW) applications where systems can benefit from higher DC-Link voltages and faster switching frequencies:

Applications

- Variable Speed Industrial Motor Drives
- HV Battery Stacking
- Transformerless Grid-Tie
- Heavy Vehicle Traction Inverters
- Hybridization of Ships
- Flywheel: High Voltage Stators
Contents

- Project Overview
- Motivation
 - Why SiC 6.5 kV JFETs?
- 6.5 kV Applications
- 6.5 kV Enhancement Mode JFET
- Power Module Overview
- Buck Converter Testing
- Summary
6.5 kV Enhancement Mode (Normally-Off) JFETs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design Target</th>
<th>Meas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time, t_r</td>
<td>150 ns</td>
<td>149 ns</td>
</tr>
<tr>
<td>Fall Time, t_f</td>
<td>100 ns</td>
<td>99 ns</td>
</tr>
<tr>
<td>Turn-on E_{on}</td>
<td>2.66 mJ</td>
<td>2.71 mJ</td>
</tr>
<tr>
<td>Turn-off E_{off}</td>
<td>0.9 mJ</td>
<td>1.54 mJ</td>
</tr>
</tbody>
</table>

Ultra Low Switching Losses

JFET On-State

RDSon = 350mΩ
ID = 15A
T=25°C

VDS, V

ID, A

0.00 2.00 4.00 6.00 8.00 10.00 12.00

VGS=+0V

VGS=+2.8V

3kV -11A Device Switching

Inductive load
6.5 kV Half-Bridge Module

- 4 JFETs in parallel with 4 Diodes in antiparallel
- Each switch set rated at 60A (4x15A)

Module Rating

<table>
<thead>
<tr>
<th>State</th>
<th>VDS, V</th>
<th>ID(Cont,T=25°C)</th>
<th>ID(RMS, Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-State</td>
<td>6500V</td>
<td>60A</td>
<td>VDS ~3300V</td>
</tr>
<tr>
<td>On-State</td>
<td></td>
<td></td>
<td>~40A</td>
</tr>
</tbody>
</table>
Module Performance

On-State

- Tj=25°C
- RDSon = 100mΩ
- ID = 60A, VD = 5.8V
- VGS = +3.5V
- VGS = +0V

Off-State

- IDSS < 3mA
- 6500V

Thermal Resistance

<table>
<thead>
<tr>
<th>Thermal Resistance</th>
<th>Value (C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{TH-JC}}$ (Junction-Case)</td>
<td>0.11</td>
</tr>
<tr>
<td>$R_{\text{TH-HS}}$ (Heatsink-Amb)</td>
<td>0.09</td>
</tr>
<tr>
<td>$R_{\text{TH-Tot}}$ (Junction-Amb)*</td>
<td>0.20</td>
</tr>
<tr>
<td>Max Power Dissipation</td>
<td>875W/per leg</td>
</tr>
</tbody>
</table>

*measured
High Temp Performance

- Positive Temperature Coefficient
- Good for paralleling chips
- Leakage < 250uA at 3kV for Tj=200°C

On-State

- VGS = +3.5V
- Tj=25°C
- Tj=100°C
- Tj=175°C
- Tj=200°C

On Resistance vs. Temperature

- VGS = +3.5V

Leakage Current vs. Switch Leg ID

- 3kV
- Tj = 25°C
- Tj = 200°C
- USCi Designed Gate Drivers
 - 2 Level Design:
 - +12V Turn-on
 - +5V On-state

- Switch Driver IC’s
- TTL Logic IC’s

3kV – 60A Module Switching Waveform

- Rise Time = 185ns, $E_{on} = 28\, \text{mJ}$
- Fall Time = 130ns, $E_{off} = 9.2\, \text{mJ}$

- Inductive Load

$R_{Gate} = 6\, \text{Ohms}$
Module Losses

- Measured Turn-on and Turn-off Energies vs. bus current and gate resistors, R_g

- Compare to 6.5kV 250A Si-IGBT

- 4 SiC Modules in parallel to scale to 240A max rating

20X reduction in switching losses!
Contents

- Project Overview
- Motivation
 - Why SiC 6.5 kV JFETs?
- 6.5 kV Applications
- 6.5 kV Enhancement Mode JFET
- Power Module Overview
- Buck Converter Testing
- Summary
Buck Converter Testing

- DC/DC Down Converter
- **S1 On-State**
 - Current passes through switch, S1
- **S1 Off-State**
 - Current passes through diode, D2
- Steady-State Operation
 - Measure Module Temperature & Losses

\[V_{out} = V_{in}D \]
\[D = \text{Duty Cycle} \]
Buck Converter Operation

- Example: Continuous Mode Operation
- 50% Duty Cycle - Hard Switching
- 10 kHz Switching Frequency, $P_{\text{out}} = 21\text{kW}$

Module Base Plate
Steady State Temp ~ 29°C

$P_{\text{out}} = 21\text{ kW}$
$P_{\text{loss}} = 120\text{ W}$
Module Efficiency = 99.4%
Module Efficiency

- Module Efficiency vs. Converter Power Out
- 50% Duty Cycle - Hard Switching

- Buck Converter power output limited by resistor load bank to 22 kW
- At 20kHz, thermal effects start to show, transient parasitics emerged which require further investigation
Summary

- Demonstrated low loss *enhancement mode* 6.5 kV SiC JFET based power module
- Demonstrated 3.3kV switching at 10kHz, 15 kHz and 20 kHz in buck converter
- Module targets next generation high DC-Link voltage power conversion applications aimed at higher power densities

Acknowledgements

- USCi would like to thank Dr. Imre Gyuk of the DOE Energy Storage Program for funding and Dr. Stan Atcitty of Sandia National Labs for his technical contribution.
Thank You!

Dr. John L. Hostetler
United Silicon Carbide
jhostetler@unitedsic.com
732-355-0550