EESAT TECHNICAL CONFERENCE, Portland, OR

Implementation of the NELHA Energy Storage Test Bed

September 22, 2015

Gregory Barbour
Laurence Sombardier
Keith Olson

Natural Energy Laboratory of Hawaii Authority

Daniel Borneo
Hawaii Ocean and Science Technology Park
administered by the Natural Energy Laboratory of Hawaii Authority
ENERGY PROJECTS at NELHA

- Ocean Thermal Energy Conversion (OTEC)
- Solar (PV and CSP)
- Biofuels from Microalgae
- Sea Water Air Conditioning
- Energy Storage Test Bed
Why an Energy Storage Test Bed at NELHA?

Hawaii Policy
- State’s overdependence on oil
- Aggressive Clean Energy Policy – 100% by 2045
- Based on abundance of natural renewable resources (sun, wind, bio, geo, hydro, ocean)

Demonstration Needs
- Motivated customers
- User Demand (Utility, Commercial, Residential, Military) for real world demonstrations in industrial setting
- 100-150 MW storage deployment needed in next few years
- High percentage of renewables needing to be integrated on grids

Roll Out
- High electrical rates between $0.30 and $0.40/kWh
- Government private partnerships
- Master permit
Real World Testing and Validation of Pre-Commercial Energy Storage

Testing Site Power Source Monitoring

State of Hawaii NELHA

Hawaii County

HELCO (Utility)

National Labs USDOE/OE

Funding Conferences

Expertise End User

Expertise Energy Proposals Funding
Initial Partners 2014/2015

<table>
<thead>
<tr>
<th>Government</th>
<th>National Labs</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>• State of Hawaii</td>
<td>• Sandia National Laboratories</td>
<td>• Hawaiian Electric Company</td>
</tr>
<tr>
<td>• County of Hawaii</td>
<td>• National Renewable Energy Laboratory</td>
<td>• Makai Ocean Engineering</td>
</tr>
<tr>
<td>• US DOE – Office of Electricity</td>
<td></td>
<td>• Aquion Energy Inc.</td>
</tr>
</tbody>
</table>
Energy Storage Test Bed Short List

- Aquion Energy
 Pre-commercial aqueous hybrid ion battery (1.7 kWh)

- Imergy Power Systems
 Vanadium flow battery

- JuiceBox
 Integrator of small scale <60kW lithium-ion storage
First Installation: Aquion Battery (Generation 1)

- Installation March 2015
- One M100 Battery Module
- Minimum 21.9kWh based on C/20 standard discharge rate
- Local Partner: Renewable Energy Services
Aquion Battery (Generation 1) – Initial Duty Cycle (HELCO preferred)

- Full data collection started June 10, 2015
- Sandia to perform evaluation on 6 months data in November 2015
Aquion Battery (Generation 1) - Duty Cycle (Compromise)
Aquion Gen 1 Battery Efficiency (Daily)
from June 10 to September 7, 2015
Developing an ESS Test Bed – Lessons Learned

- *Consumer vs industrial* – integration challenges

- *Rapidly moving field* - permitting process must be streamlined

- *Value of partnerships* – utility in particular

- *Data Accessibility* – central, user friendly, web accessible
Future Work and Projects

- **Oct 2015 (in progress):** Hawaii Natural Energy Institute (HNEI) Hydrogen production and fueling station (65 kg/day)
- **Jan 2016:** 200kW PV and energy storage installation at Research Campus – Microgrid
- **Feb 2016:** Use of reconditioned Prius hybrid vehicle batteries as potential energy storage solution
- **2016 (?):** Ocean Compressed Air Energy Storage (OCAES)
- **2016 (?):** Modular Pumped Hydro Demonstration
- **2016(?):** Wave Energy/Desalination Demonstration
Acknowledgments:

- DOE Office of Electricity, Dr. Imre Gyuk
- Sandia National Laboratories, Daniel Borneo
- Hawaii Electric Light, Bryant Komo
- Aquion Energy, Tim Wood
- Renewable Energy Systems, Roland Shackelford
NELHA/HOST Park

Explore the possibilities...

Laurence Sombardier
www.nelha.org
laurences@nelha.org
808-327-9585 X244