Increasing Renewables in California and Need for Energy Storage

Solar energy will become a main source of energy in the future:
- Germany has 36GW of installed PV (>50% of power demand).
- In California, PV production is contributing to 15% of peak demand.
- U.S. Solar Industry is a $11.5 Billion market with the growth of 34% in 2012.

Forecasted Impact of Renewables on California Load Curve

High PV penetration and Wind generation is expected to drastically alter the net load and resources curve in California in the future:
- Energy storage is needed to ensure resource adequacy due to the variability and uncertainty of dispatch.
- Capture of PV solar mid-day can be used to reduce the evening peak and increase overall efficiency and flatten the “duck” curve.
- Energy Storage coupled with solar forecasting can be used to improve dispatch-ability of renewables and unit commitment.

Peak load shaving control with Short-term Solar Forecast for Storage System

Control with Sky Imager Solar Forecast was developed for a 31 kW PV tied to a 31 kW Li-ion at Hopkins parking structure at UCSD, CA. The solar forecasts was used to optimize the charge/discharge cycling for peak load shaving and battery life longevity. The strategy for peak load shaving is “Time-of-use Energy Cost Management Plus Demand Charge Management” (Eyler and Corey, 2010).

Summary of Energy Storage Research at UCSD

Goal: To test and demonstrate various types of energy storage to support integration of high penetration of renewable generation for microgrid operations.

- 30 kW, 30 kWh Sanyo/Panasonic Li-Ion battery energy storage system, integrated with 30 kW PV
- 35 kW, 35 kWh MCV Energy, Community Energy Storage
- 10 kW, 25 kWh Flywheel, Amber Kinetics, CEC
- 108 kW, 181 kWh BMW, demonstration of application of 2 nd use EV batteries, coupling to PV, and EV charging
- 2.5 MW, 5 MWhr, SGIP Advanced Energy Storage, design underway
- 730 kW, 1460 kwhr SGIP PV Integrated, five off campus sites
- 30 kW, Maxwell Labs, Ultracapacitors, CPV smoothing of intermittency, coupled with solar forecasting
- 3.8 Million Gallon Thermal Energy Storage

Central Microgrid Control of Energy Storage Dispatch Test and Developed at UCSD

Demand Charge Management Example Using UCSD Building Load

- 30 kW/30 kWh Li-Ion Energy Storage, Integrated with 30 kW PV
- 35 kW Community Energy Storage - MCV
- 25 kW/5 kWh Battery Energy Storage System
- 2.5 MW/5 MWh Li-Ion Energy Storage

Frequency Regulation Energy Storage Power Output

- 100 kW / 160 kWh Li-ion Repurposed BMW EV batteries

Results in table below shows that the incorporation of forecast data was shown to dramatically increase system lifetime (6 years extra) and its lifetime profit (360% increase on a 31 kWh storage system).

<table>
<thead>
<tr>
<th>Optimization with PV Power Output and Load Forecast</th>
<th>Off-Peak/On-Peak without PV Power Output and Load Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual energy bill cost reduction [1]</td>
<td>31,200</td>
</tr>
<tr>
<td>Number of cycles at 80% DoD [cycles/yr]</td>
<td>212</td>
</tr>
<tr>
<td>Battery lifetime [years]</td>
<td>14.2</td>
</tr>
<tr>
<td>Fixed cost simple payback time [years]</td>
<td>5.7</td>
</tr>
<tr>
<td>Total profit at end of battery lifetime (annual energy bill savings x battery lifetime - fixed costs) [$/yr]</td>
<td>281,000</td>
</tr>
</tbody>
</table>