Flow Battery Structures to Improve Performance/Reduce Manufacturing Cost

Goal/Objective

Develop, demonstrate and commercialize a versatile, low cost manufacturing process for fabrication of flow battery plate components enabling improved performance and reproducible integration of stack components:

- **Versatile** ➔ applicable to most flow battery systems
 - Materials Ti, Ta, Alloys, SS, carbon/graphite
- **Low cost manufacturing**
 - Pattern/feature flexibility for R&D optimization
 - Low Rate Initial Production (LRIP) trials
 - Volume manufacturing

Low Cost Pattern/Feature Definition

- Bare Metal
- Resist Application
- Exposure
- Counter electrode
- FARADAYIC Etch
 \[M \rightarrow M^{\text{ox}} + n\text{e}^- \]
- Develop
- Strip

FARADAYIC® ElectroEtching/ElectroCell

- Forward pulse
- Time off
- Reverse pulse
- Anodic (+)
- Cathodic (-)

Initial Activities & Future Work

- Modeling used to identify feature size and shape to enhance the limiting current density while minimizing pumping power for flow batteries
- Experimental work in progress to fabricate plates for performance tests in relevant test systems
- Manufacturing cost assessment for high volume production completed
- Establish design rules for FARADAYIC® ElectroEtching for various metals and surface features
- Manufacturing cost assessment for low volume production