OBJECTIVE

Develop a high voltage (> 15kV) silicon carbide (SiC) power module to aid in the emergence of smarter, seamless powered grids.

APPLICATIONS

- Energy storage systems
- Solid-state transformers
- Naval power distribution
- Electric locomotives
- Solid-state circuit breakers

ADVANTAGES

- Reduce size/complexity compared to multi-level system
- Eliminate cooling systems
- Increase efficiency and power density

BACKGROUND

- High switching frequency
- Solid state circuits
- Increase efficiency and power density

RESULTS

- Thermal, Electrical, Mechanical Simulations
 - Baseplate Displacement
 - Dispersed Power (W)

- Power Module Assembly Development
 - Low void power substrate attach (< 5 % voids)
 - Low void Ag sinter die attach
 - Low leakage current up to 22.5 kV

APPROACH

Design a high performance power module that will take full advantage of the superior properties of high voltage SiC devices.

ADVANTAGES OF SiC DEVICES

- High breakdown voltage
- High thermal conductivity
- High switching frequency
- High temperature operation

POWER MODULE FEATURES

- Device neutral
- Low profile
- Reduced volume/weight
- High temperature capable (200 °C)

FUTURE WORK

- Power Module Static Testing
 - Gate leakage
 - Reverse leakage
 - On-state curves
 - On resistance
 - Transconductance

- Power Module Dynamic Testing
 - Turn-on and -off delay time
 - Rise and fall time
 - Turn-on and -off over voltage
 - Switching loss

APEI, Inc. would like to thank Dr. Imre Gyuk of the DOE Energy Storage Systems Program and Dr. Stan Atcitty for his technical contributions.