Original KEMA Study on Emission Benefits

- Study was conducted in 2007 and compared a flywheel to traditional technologies
 - Study highlights
 - Showed emission savings from utilization of storage
 - Study provided a simple “snapshot” of potential trends
 - Compared a flywheel to natural gas, coal, and pumped hydro systems
 - Methodology “vetted” at 2007 EESAT Conference
 - Next steps called for a “deeper dive into actual performance numbers
 - Actual simulations of specific ISO

- Today, study is still cited as the main “Emission “ Study for such applications
 - Results referenced in many cases as a secondary benefit of storage systems
 - But model simply lacked the granularity such roles require
2nd Generation Study on Emission Benefits

- Goal was to update the study using tools that have been developed since the time of the first study
 - Actual ISO territories were modeled instead of the original “snapshot” approach
 - Used emission models of actual generators instead of a “generic” plant
 - Coordinated with actual ISOs to collect the data for the study
 - CAISO model included 590 power plants and 14 control areas
 - PJM Model included 600 power plants and 19 control areas

- Results provided a more accurate assessment of the potential emissions savings to utilizing advanced storage systems vs. traditional power plants
 - Study substituted specific plants with Lithium and flywheel devices from a 25% penetration of regulation supplied up to 100% of the regulation
Tools Used for the Study

- **DNV KEMA KERMIT Model**
 - Designed to study a power systems frequency behavior over a 24 hour period
 - Able to simulate AGC signals as well as grid-scale storage
 - Defines hourly and sub-hourly generation schedules for 100s of generators

- **Emission feature of KERMIT Tools**
 - Incorporates a dynamic emissions model to estimate CO2 and NOx emissions for combustion turbines, coal plants, and combined cycle plants
 - Estimates emissions based on a generator's current output level and for utilizes ramp rates for combustion turbines

Courtesy Dr. Jay Apt & Dr. Warren Katzenstein
Results for PJM Territory

- Emissions reductions seen for PJM
 - Key Points about PJM
 - Largest of the ISO/RTO Territories
 - Regulation provided by a combination of coal, combined cycle, and hydro plants
 - Largest of ISO territories – regulation typically represents approximately 1% of total load

- Drivers for the market
 - Only a portion of the generators supplying services considered less efficient – hence optimal savings occurred when portion of regulation total supplied by storage
 - Really don’t have devices dedicated to regulation, typically will provide 5-20% of their output to regulation market
 - Can’t really “bump” device out of market – devices typically go back to performing in real time energy market

<table>
<thead>
<tr>
<th>Selected Day</th>
<th>CO2 Tons Base Case</th>
<th>CO2 Tons 50% Storage</th>
<th>Difference</th>
<th>Estimated Month Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Jan</td>
<td>887359</td>
<td>887314</td>
<td>45</td>
<td>1395</td>
</tr>
<tr>
<td>18-Feb</td>
<td>639117</td>
<td>639081</td>
<td>36</td>
<td>1008</td>
</tr>
<tr>
<td>20-Mar</td>
<td>544915</td>
<td>544881</td>
<td>34</td>
<td>1054</td>
</tr>
<tr>
<td>11-Apr</td>
<td>665802</td>
<td>665765</td>
<td>37</td>
<td>1110</td>
</tr>
<tr>
<td>10-May</td>
<td>658456</td>
<td>658406</td>
<td>50</td>
<td>1550</td>
</tr>
<tr>
<td>15-Jun</td>
<td>999290</td>
<td>999230</td>
<td>60</td>
<td>1800</td>
</tr>
<tr>
<td>10-Jul</td>
<td>944278</td>
<td>944250</td>
<td>28</td>
<td>868</td>
</tr>
<tr>
<td>15-Aug</td>
<td>848813</td>
<td>848763</td>
<td>50</td>
<td>1550</td>
</tr>
<tr>
<td>7-Sep</td>
<td>842677</td>
<td>842613</td>
<td>64</td>
<td>1920</td>
</tr>
<tr>
<td>28-Oct</td>
<td>675138</td>
<td>675097</td>
<td>41</td>
<td>1271</td>
</tr>
<tr>
<td>11-Nov</td>
<td>667589</td>
<td>667553</td>
<td>36</td>
<td>1080</td>
</tr>
<tr>
<td>13-Dec</td>
<td>961636</td>
<td>961605</td>
<td>31</td>
<td>961</td>
</tr>
<tr>
<td>Total Year</td>
<td></td>
<td></td>
<td>15567</td>
<td></td>
</tr>
</tbody>
</table>
Results for CAISO Study

- Results less conclusive
 - Simulations were run over 6 days throughout the year – model was not able to pick up trends or patterns of reduction or increases
 - Why? Regulation market made up of pumped hydro, combustion turbines, combined cycle plants
 - Follows similar trends to PJM where generators contribute partial amounts of nameplate capacity to regulation

- Using storage to replace Spinning Reserve
 - Examined as a potential area of benefit
 - Four cases examined
 - Hypothetical 100 MW of spinning reserve where it is replaced by 20 MW of storage and 80 MW of traditional generation

<table>
<thead>
<tr>
<th>Case</th>
<th>CO2 (ton) Before</th>
<th>CO2 (ton) After</th>
<th>NOx (lb) Before</th>
<th>NOx (lb) After</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64.59</td>
<td>63.20</td>
<td>70.81</td>
<td>56.65</td>
</tr>
<tr>
<td>2</td>
<td>3.32</td>
<td>0</td>
<td>5.67</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>79.00</td>
<td>63.20</td>
<td>70.81</td>
<td>56.65</td>
</tr>
<tr>
<td>4</td>
<td>15.80</td>
<td>0</td>
<td>14.16</td>
<td>0</td>
</tr>
</tbody>
</table>
The authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program

Questions?