ARPA-E Storage Overview

Mark Johnson

September 26, 2012
DOE Energy Storage Review
A Brief History of ARPA-E

2006
Rising Above the Gathering Storm (National Academies)

2007
America COMPETES Act

2009
ARPA-E Launched at National Academies: April 27, 2009

First Funding Announcement: May 2, 2009

2009 ARRA
($400M appropriated)

FY11 Budget CR
($180M appropriated)

FY12 Budget
($275M appropriated)

Innovation based on science and engineering will be primary driver of our future prosperity & security
Energy Innovation Pipeline

Office of Science

ARPA-E

Technology Transition Path

Technology Transition Path

Applied Energy Offices

Basic Science

Technology Maturity

Deployment

Venture Capital and Small Businesses

Private Equity/Capital & Large Corporations

Government Procurement
Progress of Disruptive Technologies

Transformational & disruptive technologies that lead to new learning curves

Steam-powered Cugnot (1769)
Benz Motorwagen (1885)
Ford Model T (1914)

Transformational & disruptive
existing learning curve
new learning curve
tipping point

cost / performance

time
Societal Problem Driven Fundamental Research: Industrial Synthesis of Ammonia

Food Global Population, on Track to Exceed 2,000,000,000

Food Production (Wheat) in Concentrated Locations (US)

$N_2 + 3H_2 \rightarrow 2NH_3$

“...the fixation of Nitrogen is vital to the progress of civilized humanity”

William Crookes (1898)
Ammonia R&D Timeline

Royal Academy
“Wheat Problem”

Understanding Properties Of Ammonia

Academic Fight

Lab Demo

Pilot Scale

Production

“Grand Challenge”

Basic Research

Break-Through

“Catalyst Genomics”

1898 1900 1902 1904 1906 1908 1910 1912 1914

Crookes

Ostwald & Nernst

Haber

Bosch

Mittasch
Technology Innovators Might be Found in Unlikely Places

Samuel Langley
Ivy League Faculty
Smithsonian President
Well Funded

Wright Brothers
Little Education
Bicycle Mechanics
Boot-Strapped
What makes an ARPA-E project?

1. Impact
 - High impact on ARPA-E mission areas
 - Credible path to market
 - Large commercial application

2. Transform
 - Challenges what is possible
 - Disrupts existing learning curves
 - Leaps beyond today’s technologies

3. Bridge
 - Between basic science and applied technology
 - Not researched or funded elsewhere
 - Catalyzes new interest and investment

4. Team
 - Best-in-class people
 - Cross-disciplinary skill sets
 - Translation oriented
Characteristics of Renewable Electricity Balancing Reserves
Firm Wind Generation for High Renewable Penetration.

System Challenge: Efficient Energy Storage at Minutes to Hours Duration to Firm Ramping Balance

Wind Capacity: 3372 MW

Hydropower Range: 1600-2000 MW
Balancing Wind and Load Has Gotten More Challenging

Wind Capacity 4711 MW

September 2012 Update Example

Hydropower Range 1600-2000 MW
Externality

$2.50 / MBTU for Natural Gas

and $25-50 / MWh for Electricity

Storage Need to Be **Systems** Solutions at **Low Cost**
Focus: Transformational approaches to energy storage to enable low cost

New Technology Need: Low-Cost Energy Storage Solutions

Grid-scale Rampable Intermittent Dispatchable Storage (GRIDS) Program Metrics

Balancing Reserves at <$100/kWh

Greater than 5000 cycles and 80% RTE

Economics of Hydro / Deploy Anywhere

Technology Agnostic: Chemical, Mechanical, Electromagnetic

Connect Across Industry for Handoffs
ARPA-E Stationary Energy Storage Portfolio

Capacity & Energy

Power Density (Capacity)

Flywheel

SMES

Flow Cells

E-C Cells

CAES

Stationary Storage

FOA1: 6
GRIDS: 12
SBIR: 4
GRIDS: Sample Efforts

General Compression
Isothermal Compression: Technology Bridge to Commercial Follow-on

United Technologies
High Current Density Flow Battery

University of Southern California
Iron-Air: Iron is Cheap & Air is Free

City University of New York
Cheap, Recyclable Alkaline Cell
ADEPT: Agile Delivery of Electrical Power Technologies

Integrated Circuits for Power Systems

- On-chip inductors and transformers
- High-voltage transistors (GaN and SiC)
- High-energy capacitors
Magnetics
- largest, most expensive part of a power converter

>92% Dimmable LED Driver (comm. 37-50% of luminaire cost)

1MW Photovoltaic Inverter
($0.2/W)

40% Magnetics

\[Z = j\omega L \]

Discrete inductors
- Large inductance
- Large volume
- Poor AC performance

Planar spiral inductors
- Small area consumption
- Small inductance
- Limited performance in sub-GHz applications

Source: Shan Wang, Stanford
High Voltage Solid-State Devices
20kV & 1MW SiC Transistors

- Significantly improved SiC IGBTs
 - High voltage (20kV)
 - Extremely efficient (>98%)
 - Fast switching (50kHz)
 - Higher minority carrier lifetimes, and blocking layers – improved reliability and lifetime
 - High device yields

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Mass</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Hz</td>
<td>8,160 lb</td>
<td>4.80m³</td>
</tr>
<tr>
<td>50 kHz</td>
<td>100 lb</td>
<td>0.14m³</td>
</tr>
</tbody>
</table>
Electric Grid Energy Storage

Generation Related Attributes
- Ancillary Services
- Renewable Integration
- Generator Cycling Cost
- Asset Capacity
- Price Arbitrage Peak Shaving
- Rate Optimization

T&D Related Attributes
- Reliability
 - New Potentially Disruptive Applications
 - Consumer-Side Storage
 - EV Charging Support
 - T&D Upgrade Deferral
 - T&D Life Extension

Storage Duration
Recent Opportunities

Energy Storage SBIR/STTR [7 new]

Advanced Management and Protection of Energy-Storage Devices (AMPED) [12 new]

Open FOA

https://arpa-e-foa.energy.gov/
Meet the ARPA-E Project Teams at Poster Session this Afternoon

Thank You
Thanks to our conference sponsors

EAST PENN manufacturing co., inc.

AQUION ENERGY

Raytheon Ktech

A123 SYSTEMS

EnerVault Safe, Reliable, Cost-Effective Energy Storage