CAES Geo Performance for Natural Gas and Salt Reservoirs,

Thermal-Mechanical-Hydraulic Response of Geological Storage Formations for CAES

27 September 2012

SJ Bauer, M Martinez, W. Payton Gardner, J Holland

- **Problem**: Siting of CAES facilities may be limited by specific geologic conditions

- **Opportunity**: Fundamental understanding of T-M-H will enable/extend CAES siting potential throughout the US
1. CAES in Mined Salt Caverns
 - Model large scale salt cavern response to air pressure cycling
 - Experimentally evaluate thermal cycling effect on domal salt

2. CAES in Depleted Natural Gas Reservoirs:
 - Model multiphase flow in a depleted natural gas reservoir for CAES
 - Experimentally evaluate pore pressure cycling effect on sandstone deformation
Large scale salt cavern response to air pressure cycling

- Assess long term performance, efficiency and economics.
- Cavern gas thermodynamics is coupled with energy transfer to and from the salt formation.
- Minimize creep/damage of the cavern and minimize efficiency-reducing energy losses to and from the formation.

Coupled 3D simulation of cavern gas thermodynamics and heat/mass flow in salt

Walls are 30m thick. Cavern is made up of cylinder midsection (height=65m; radius 40m) with hemispheres (radius=40m) at top and bottom.
Response of CAES to pressure/temperature cycling: Closeup

Cycle: 5 days on, 2 days off (weekend)
- Extract for 16 hours (154 kg/s)
- Inject for 7 hours (352 kg/sec, 40 °C)
- Hold for 1 hour

Upper row of figures: Salt response
- temperature fluctuation ~ 1-2 m
- pressure fluctuation ~ 40 m

Lower row of figures: Cavern T & P response
- start-up transient
Experimental System Developed to detect and record Acoustic Emissions (cracking events) in salt as it was heated and cooled.

Observation: For this temperature range and slow heating and cooling rate, only a small amount of acoustic emissions (thermal cracking) are detected.

Future work: thermally cycle rock salt at realistic heating and cooling rates.
1. CAES in Mined Salt Caverns
 - Model large scale salt cavern response to air pressure cycling
 - Experimentally evaluate thermal cycling effect on domal salt

2. CAES in Depleted Natural Gas Reservoirs:
 - Model multiphase flow in a depleted natural gas reservoir for CAES
 - Experimentally evaluate pore pressure cycling effect on sandstone deformation

Images taken from: http://www.rwe.com/
Formation Analysis for CAES in Depleted Natural Gas Reservoirs

Cylindrical Region

Days From Initial Injection

Mass Injection/Extraction Rate (kg/s)
After natural gas production, residual CH$_4$ is left behind.
Residual gas saturation for the given formation parameters is between 10-20% of the total porosity.
This gas phase is composed of 100% CH$_4$.
Forming an Air bubble - Gas Composition During Bubble Formation

- N_2 bubble is formed and pushes the CH_4 to the fringes.
- Relatively little mixing during bubble formation.
- N_2 rich bubble next to bore
Reservoir Pressure During Cycling
Cycling – Pressure
Pore pressure cycling of sandstone

Experimental System Developed
to cycle pore pressure in a
sandstone in hydrostatic stress state

Observation: Sandstone compacts over time,
repeated cycles: permeability decreases

Future work: Evaluate cycling effect on other
stress state, additional sandstone lithologies
(rocks with different cement, porosity, permeability)

Volume strain versus time:
Compaction observed

Decrease in permeability
with cycle/time
Cycling – Methane in Produced Gas

![Graph showing methane in produced gas over time and depth.](image)
CAES in Depleted Natural Gas Reservoirs is a Viable Option

- Have a numerical framework in place to simulate air, methane, and water movement in a porous reservoir
 - First CAES simulations in a depleted natural gas reservoir
- CAES in depleted natural gas reservoirs appears to be a viable option
Summary/Conclusions

- Developed numerical analysis method to evaluate thermal and mechanical effects of air mass flow cycling in a salt cavern
- Developed experimental system to evaluate thermal cycling effect on rocksalt

- Developed numerical analysis method to model multiphase flow of air, H2O and methane for a CAES evaluation in a depleted natural gas reservoir
- Developed experimental system to evaluate pore pressure cycling effect on sandstone
Future Tasks

- Evaluate thermal cycling effect on rocksalt using thermal cycles determined from analyses (below)
- Evaluate model comparing to actual real pressure/temperature cycling data from industry partner
- Develop operational (cycle variations) and geologic (i.e. depth) assessments to probe geo-system flexibility
- Evaluate pore pressure cycling effect for other stress conditions and reservoir rocks
- Improve on multiphase flow model for depleted natural gas reservoir; evaluate different cycles (i.e. wind generated), examine the effect of heterogeneity
Publications

- Pore pressure cycling effects in a sandstone, 2012, S. Bauer, Sandia National Laboratories, SAND report in prep
- Permeability and heterogeneity restrain compressed air energy storage in the Mount Simon Sandstone, Dallas Center structure, Iowa, 2012, J. Heath, and S. Bauer, Sandia National Laboratories, SAND report in prep
Contact Information

- PI: Stephen Bauer sjbauer@sandia.gov
- Payton Gardner wpgardn@sandia.gov
- Mario Martinez mjmarti@sandia.gov

The authors gratefully acknowledge the support of Dr. Imre Gyuk and the Department of Energy’s Office of Electricity Delivery & Energy Reliability.