Iron Based Flow Batteries for Low Cost Grid Level Energy Storage

J.S. Wainright, R. F. Savinell, P.I.s
Dept. of Chemical Engineering, Case Western Reserve University

Purpose

Develop efficient, cost-effective grid level storage capability based on iron.

Goals of this Effort:
- Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost
- Minimize Cost/Whr by increasing plating capacity
- Maximize Efficiency by minimizing current lost to hydrogen evolution

Electrochemistry of the all-Iron system:

Positive: \(\text{Fe}^{+2} \leftrightarrow \text{Fe}^{+3} + 0.77V \)

Negative: \(\text{Fe}^{+2} \leftrightarrow \text{Fe}^{0} - 0.44V \)

Cell: \(3\text{Fe}^{+2} \leftrightarrow \text{Fe}^{0} + 2\text{Fe}^{+3} + 1.21V \)

Impact on Iron Based Batteries on the DOE OE Energy Storage Mission

Widespread grid level storage will require:
- Low Cost
 - All-Fe battery uses one low cost active element and inexpensive separators
- Environmental Acceptability
 - Mild pH, non-toxic electrolyte
- Geographic Flexibility
 - Iron is readily available from domestic sources

Research Plan

Year 1: COMPLETE
- Ligand Screening – demonstrated \([\text{Fe}^{+3}] >0.5M \ @ \text{pH}>2\)
- \(\text{H}_2\) evolution suppression – effect of pH, anions evaluated

Year 2: IN PROGRESS
- Effect of Ligands on Fe plating efficiency, morphology
- Separator studies – \(\text{Fe}^{+3}\), Ligand crossover

Year 3:
- Optimization of plating capacity, current density to maximize efficiency
- Scale up from 50 cm\(^2\) to 250 cm\(^2\)

Recent Results

- **Demonstrated**
 - Adherent, Stress-Free, Dendrite-Free Plating
 - Deposit Thickness
 - Shown is Equivalent to 75 mAh/cm\(^2\)
 - Deposits up to 150 mAh/cm\(^2\) have been made

- **Demonstrated**
 - Coulombic Efficiency >99% for Iron Plating
 - \(T = 60C\)

- **Measurement and model of Fe+3 crossover**
 - Room Temperature
 - Daramic Separator
 - Equivalent to 0.5% Capacity Loss in 24 hrs with Electrolyte Circulating

- **Measurement and model of Fe(II)/Fe(III) Overpotentials**
 - Negligible Kinetic Loss
 - Ohmic and Mass Transfer Overpotentials
 - Total Overpotential <20 mV @ 0.1 A/cm\(^2\)

The authors gratefully acknowledge the support of the Department of Energy/Office of Electricity’s Energy Storage Program.