

Funding Agency: Department of Energy, Office of Electricity – STTR Grant No. DE-SC007516

Goal

- Faraday, in collaboration with Case Western Reserve University aims to optimize the following:
- Increased reactant mass transfer while maintaining acceptable pressure drop,
- Reduced electrode cost (currently ~39% of total cell stack cost) by using thin metal substrates with engineered surfaces, – Simplified cell manufacturing costs (currently ~10% of total cell stack cost) by reducing the parts count and integrating the electrode and bipolar plate components, and
- Enhancement in stack reproducibility by eliminating non-uniform felt type electrodes and maintaining a fixed membrane-plate separation.

Flow Battery – Introduction and Scope

- A flow battery, is a rechargeable battery that uses electrolytes moving ("flowing") through an electrochemical cell to convert chemical energy from the electrolyte into electricity (and vice versa when charging).
- The electrolytes are generally composed of ionized metal salts and stored in large external tanks. Like traditional batteries, cells are "stacked" together in a flow battery system to achieve the desired power output.

Diagram of an iron hybrid flow battery including system components and electrochemical reactions.

Current Technology and Its Limitations

- Traditional redox flow batteries are limited in their use due to non-uniform pressure drops and mass transfer limitations, as well as high manufacturing costs related to the felt material costs for the electrode and component alignment challenges during manufacturing.
- Traditional redox flow batteries use a bipolar plate that is separated from the membrane using a felt electrode (on the Fe²⁺/Fe³⁺ redox side) and a plastic separator (on the Fe^{2+}/Fe^0 side).
- Disadvantages:
- Lower battery performance due to:
- -- Undesirable pressure drops, and
- -- Decreasing reactant mass transfer
- Increased manufacturing costs due to: -- Difficulty in alignment during manufacturing, and
- -- Additional material (felt) cost.

Faraday's Approach

- Replace conventional bipolar plate components with thin metal substrates that have engineered electrode/bipolar plate structures and eliminate the separate non-uniform carbon felt electrodes
- The engineered structures utilize arrays of posts, pyramids and/or
- pillars on the bipolar plate surface to create uniform standoff between the plate and the membrane, on both sides of the membrane. • Advantages
- Improved battery performance by:
- -- Increasing mass transfer while maintaining acceptable pressure drops for both the Fe^{+2}/Fe^{+3} and Fe^{+2}/Fe^{0} flow battery couples
- -- Delivering a ~5x increase in current density compared to state of the art cells
- Decreased manufacturing costs by:
- Enhancing stack reproducibility by eliminating the need to align non-uniform felt type electrodes and maintaining a fixed membraneplate separation
- Eliminating the need for the cost of the felt electrodes

Electrode-Standoff Structure

Flow Battery Structures to Improve Performance and Reduce Manufacturing Cost

E. J. Taylor, B. Kagajwala, H. McCrabb, Faraday Technology, Inc, Clayton, OH J. Wainright, R. Savinell, Case Western Reserve University, Cleveland, OH

FARADAYICSM ElectroEtching Process

FARADAYICSM Waveform

- Electrochemical processing removes metal in a selective manner from the surface of the work piece by converting the metal into ions by means of an applied electric field.
- There are unlimited combinations of peak current densities, duty cycles, and frequencies to obtain a given etching rate. These additional parameters provide the potential for much greater process-product control vs. DC etching.

Control panel for the heating element Re-circulating Pump -

Cathode Fixture

Bipolar –

Plate Fixture

Eductors

Previous Accomplishments and Feasibility

Faraday has successfully shown feasibility of etching channels in the stainless steel bipolar plates for PEM fuel cells, using the FARADAYICSM process, under DOE contract DE-FG02-08ER85112. A uniformity of 97 % – 98 % was observed for an average channel depth of 0.40 mm

Related IP Status FARADAYICSM ElectroEtching and FARADAYIC[®] ElectroCell • Method patents/patents pending

- US 6,221,235 (4-24-2001); 6,402,931 (6-11-2002)
- Two patents pending
- Apparatus patents/patents pending
- US 7,553,401 (6-30-2009); 7,947,161 (5-24-2011); 8,226,804 (7-24-2012) – One patent pending

This poster does not contain any proprietary, confidential, or otherwise restricted information.

FARADAYIC[®] ElectroCell Geometry

- Based upon Faraday's electrochemical cell design that facilitates uniform flow across the surface of a flat substrate (US patent #7,553,401) • Uniformity is the basic building block for establishing a
- robust, electrochemical manufacturing process. • The unique patented cell geometry and flow scheme provides great uniformity across the plates, with a coefficient of variation across the sample of less than 4%.

In on-going work funded by a commercial client, Faraday is adapting the FARADAYIC[®] Process for etching and polishing stainless steel HPLC chips in simple NaCl/NaNO₃ electrolytes. A 4" test template SS wafer with photoresist pattern was used for this design.

- component forming processes
- density in the flow batteries.

and do not necessarily reflect the views of the DOE.

T. Nguyen and Robert F. Savinell, "Flow Batteries", Interface, p. 52-54, Fall 2010. C. Ponce de Leon, A. Frias-Ferrer, J. Gonzaelez-Garcia, D.A. Szanto, and F.C. Walsh. "Redox Flow Cells for Energy Conversion," J. Power Sources. 160, 716-732 (2006). L.W. Hruska and R.F. Savinell, "Investigation of Factors Affecting Performance of the Iron-Redox Battery", Journal of the Electrochemical Society, 18-25, (1981).

Current Results

Through mask electro-etching of stainless steel plates using FARADAYIC[®] conditions

• Potential for decreasing the manufacturing time using FARADAYICSM sequential process. • Achieved etching of different features and patterns using the FARADAYICSM ElectroEtching Process. • First order economic analysis shows that FARADAYICSM ElectroEtching is competitive with other

• Continued modeling efforts to find the optimum feature size and shape to enhance the limiting current

Acknowledgements

This material is based upon work supported by the Department of Energy under Grant No. DE-SC007516. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors

References