Advanced Materials for Flow Batteries

Friday, September 28, 2012
Travis M. Anderson and Harry D. Pratt III
Sandia National Laboratories
Ionic Liquid Flow Batteries

Problem: Getting high concentrations of redox active species.

Approach: Design electrolytes with charge storage species as part of their chemical composition.

MetILs

- Transition Metal Cation
- Weakly Coordinating Anions
- Alkanolamine Ligands
- Negligible Vapor Pressure
- Non-toxic

FY12 Milestones

- 59 mV/n separation (ideally n > 1)
- Viscosity < 500 cP
- Conductivity > 0.5 mS cm\(^{-1}\)
- Open Circuit Potential > 1.5 V
Energy Density/Costs

SNL APPROACH: Consider a compound CuL₂BF₄ (L = methanolamine, MW = 47 g/mol), measured density 1.6 g/mL, formula weight, 244 g/mol

What is the molarity of redox active metal?
Divide density by formula weight (x1000 unit conversion)

6.6 M redox active copper

Leuven APPROACH: Prepared two- and four- coordinate MetILs with 4.5 and 3.1 M redox active copper.

Costs:
- Higher metal concentrations/energy density
- Single-step synthesis with low cost precursors
- Higher viscosity and pump consumption can be partially offset by operating at higher temperatures.
Role of the Anion

Ligands and Anions

- **EA** (ethanolamine)
- **DEA** (diethanolamine)

Table: Anion States and Conductivity

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Anion 1</th>
<th>Anion 2</th>
<th>State at 25°C</th>
<th>σ [mS/cm]</th>
<th>ΔE [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA</td>
<td>Liquid</td>
<td>Liquid</td>
<td>Solid</td>
<td>0.207</td>
<td>244</td>
</tr>
<tr>
<td>EA</td>
<td>Solid</td>
<td>Solid</td>
<td>Liquid</td>
<td>---</td>
<td>158</td>
</tr>
<tr>
<td>EA</td>
<td>Solid</td>
<td>Solid</td>
<td>Liquid</td>
<td>---</td>
<td>158</td>
</tr>
<tr>
<td>EA</td>
<td>Liquid</td>
<td>Liquid</td>
<td>Solid</td>
<td>6.80</td>
<td>102</td>
</tr>
<tr>
<td>EA</td>
<td>Solid</td>
<td>Solid</td>
<td>Liquid</td>
<td>---</td>
<td>256</td>
</tr>
<tr>
<td>EA</td>
<td>Liquid</td>
<td>Liquid</td>
<td>Solid</td>
<td>0.586</td>
<td>187</td>
</tr>
<tr>
<td>DEA</td>
<td>Liquid</td>
<td>Liquid</td>
<td>Solid</td>
<td>0.014</td>
<td>522</td>
</tr>
<tr>
<td>DEA</td>
<td>Liquid</td>
<td>Liquid</td>
<td>Liquid</td>
<td>0.067</td>
<td>566</td>
</tr>
<tr>
<td>DEA</td>
<td>Liquid</td>
<td>Solid</td>
<td>Liquid</td>
<td>---</td>
<td>507</td>
</tr>
<tr>
<td>DEA</td>
<td>Liquid</td>
<td>Liquid</td>
<td>Solid</td>
<td>1.05</td>
<td>150</td>
</tr>
<tr>
<td>DEA</td>
<td>Liquid</td>
<td>Liquid</td>
<td>Liquid</td>
<td>0.210</td>
<td>159</td>
</tr>
<tr>
<td>DEA</td>
<td>Liquid</td>
<td>Liquid</td>
<td>Liquid</td>
<td>0.142</td>
<td>201</td>
</tr>
</tbody>
</table>
Crystal Structures

Key Accomplishments:
• Copper is *divalent*, complex is *monovalent*
• Alkanolamines display *non-innocence*
• Compounds still display *low melting temperatures*
• *Triflate* facilitates crystallization
Ionic Liquid H-Cell Testing

- System was validated using a literature standard.
- First tested system (Mn/Cu MetIL) resulting in reduced capacity due to copper plating.
- Improved results of a Cu MetIL/Fe MetIL system with a porous separator.
Electrodeposition

Zn—EA

Zn—DEA

Cu—EA

Cu—DEA

Zinc dendrite suppression with tridentate ligand
Flow Cell Tester

Key Issues:
- Force fluid against gravity
- Avoid sharp turns
- Carbon felt/membrane contact
- Wettability
- Membrane

assembly
What have we accomplished in FY12?
• Construction of flow cell testers designed to accommodate ILs.
• Met milestone of establishing a cell with high electrochemical reversibility, viscosity under 500 cP, conductivity greater than 0.5 mS cm⁻¹, and open circuit potential of 1.6 V.
• Enhanced spectroscopic tools for improved structure determination and controlling chemical properties.
• Filed a patent.

What are our plans for FY13?
• Continued testing of our suite of MetILs to identify the best candidates.
• Development of new MetILs with non-innocent ligand technology.
• Electrode and separator research to improve compatibility with ionic liquids.
Acknowledgements

Dr. Imre Gyuk
Energy Storage Systems Program Manager
Department of Energy
Office of Electricity Delivery and Energy Reliability

Technical Team:
Jonathan Leonard, Chad Staiger, and Nick Hudak

SNL Management:
Ross Guttromson, Tony Martino, Terry Aselage, and Tom Wunsch

Sandia National Laboratories
PO Box 5800, MS0614
Albuquerque, NM 87185
tmander@sandia.gov