Update on:

Improved Properties of Nanocomposites for Flywheel Applications

Timothy J. Boyle, Mathias C. Celina, Nelson S. Bell, Benjamin J. Anderson

Sandia National Laboratories
Advanced Materials Laboratory
1001 University Boulevard SE
Albuquerque, New Mexico 87106
(505)272-7625
(505)272-7336
tjboyle@Sandia.gov

This work was supported by the Energy Storage Systems program of the Office of Electricity Delivery & Energy Reliability at the Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.
Improved materials required for next generation of flywheels to meet future needs.

Problem:
- Small changes in the AC grid necessitates rapid and exact changes for energy leveling.
- Problem exacerbated upon introduction of alternative energies (i.e., solar, wind, etc.).

Flywheels:
- Clean, rapid, and efficient method for energy leveling.
- 8 - 16,000 rpm (Mach 2) = 25 kWh
- Rugged, reliable complex instruments:
 - Rim composed of 3 components: carbon, glass, glue (resin)

Approach:
- Obtain more extractable energy by spinning flywheels faster
- To meet the new demands, improved materials necessary
- Weak link studied in this project:
 - Rim: transverse failure or ‘hula-hooping’ noted
 - Focused on using nanocomposite materials

All flywheels have similar issues – the ‘need for speed’ - kills!
Energy is stored in the rotor as kinetic energy, or more specifically, rotational energy:

\[E_k = \frac{1}{2} \cdot I \cdot \omega^2 \]

\(\omega \) = angular velocity, \(I \) = moment of inertia of the mass about the center of rotation

The amount of energy that can be stored is dependent on:

\[s_t = \rho \cdot r^2 \cdot \omega^2 \]

\(s_t \) = tensile stress on the rim, \(\rho \) = density, \(r \) is the radius, \(\omega \) is the angular velocity of the cylinder.

Goal: to explore nanocomposites as the rim material to improve flywheel performance.

Low load levels of nanoparticle fillers have led to dramatic property changes

<table>
<thead>
<tr>
<th>Loading (wt %)</th>
<th>Material</th>
<th>Storage Efficiency</th>
<th>Tensile Strength</th>
<th>Flexural Strength</th>
<th>Youngs Modulus</th>
<th>Fracture Toughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Al(_2)Si(_2)O(_5)(OH)(_4)</td>
<td>23%</td>
<td>113%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Al(_2)O(_3)</td>
<td>75%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SiO(_2)</td>
<td>3%</td>
<td>57%</td>
<td>65%</td>
<td>88%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ZrP</td>
<td>52%</td>
<td>14%</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4%</td>
<td>CNT-2% ZrP</td>
<td>41%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16,000 rpm \(\rightarrow \) 20,000 rpm
25 kWh \(\rightarrow \) 39 kWh

Small % changes in the flywheel spin speed leads to magnified energy storage

25 kWh/100 kW per unit = 21 kg TNT
Overall Objectives: Approach based on defining ‘state-of-the-art’ system and elucidating nanoparticle filler effects

Team determined approach and tasks assigned based on expertise

- Composite System (composite layup or coupon)
- Resin/Epoxy System
- Nanomaterials
- Surface Characterization

- Coupons (Epoxy)
- Nano/Epoxy Characterization

- Nano/Epoxy Coupons

- Increasing transverse strength is the pressing issue.

- Incorporation of suggested nanomaterials and/or resins will represent verification of our approach
Test ‘coupons’ reveal a good model system in-place: C-fiber/matrix interface weak link

3 components of rim:
i. carbon-fiber,
ii. glass fiber,
iii. Resin
 (a) Standard
 (b) Epoxy anhydride
 (c) Epoxy anhydride + catalyst
 (d) Epoxy amine

Filament hoop wound glass- and carbon-fiber tubes*

Glass Fiber Test

Carbon Fiber Test

Anhydride resin systems do not show much variation

*special thanks to AFRL
TiO₂ HYBR-synthesized nanofiller selected based on high aspect ratio and large scale production capabilities

Surface Modification in volatile solvent (acetone)

Dispersion of Solids in chosen phase (resin, hardener)

Hi Shear Mixing with second phase

Degassing

Casting or Processing

Matrix mechanical properties controlled by intrinsic resin properties: unfunctionalized TiO$_2$ nanomaterials have little impact

ζ-potential used as diagnostic tool for detecting/determining changes on surface of nanomaterials
Tailored surface chemistry of TiO$_2$ nanomaterials demonstrated by ζ-potential measurements.

Varied surface modification leads to vast changes in surface charging properties and ζ-potential.
Summary

Nanomaterials:
• Generated high aspect ratio TiO$_2$ nanomaterials on the large scale: HYBR route,
• Varied functionalized nanoparticles successfully generated (ζ-potential),

Nanomaterials/Resin:
• ‘naked’ nanoparticles at low loadings have little effect on solid resin matrix’s compression behavior.

Coupons:
• System produced that is in agreement with real world effort (High Quality Model system!).
• Test of glass- and carbon-fiber in variety of resin matrices.
• The coupons generated, indicate carbon-fiber is weak link.
Aims (FY11/FY12) for Improved Flywheel Materials

• Synthesize large quantities of high quality nanomaterials
 + naked
 + functionalized
 + alternative shapes/compositions/mixtures

• nanoceramic materials characterization.
 + ζ–potential measurements
 + Dispersibility in resin systems
 + stability measurement to improve dispersion.

• Determine general setup with resin variations.
 + SEM of fractured composites
 + interlaminar strength
 + Nanomaterial incorporation changes

• Functionalization of components
 + carbon fiber
 - organic
 - inorganic
 + nanomaterials
 + shape
Dissemination of results has led to many contacts (esp. from last ESS meeting) - not necessarily flywheel researchers

Papers:
(iv) Bell and Boyle “Nanoparticle stabilization mechanisms in epoxy curative fluids: wetting interaction and Van Oss model parameters” (in prep for J. Materials Chemistry)
(ii) Boyle, Steele, Velasquez “Synthesis, Characterization, and Comparison of Family of Sodium Aryloxide Solvated Compounds with their Congener Members” (submitted to Inorganic Chemistry)
(i) Boyle, Steele, Saad “Structural Characterization of a Novel Family of Cesium Aryloxide” (in Press - Inorganic Chemistry).

Patents/Technical Advances: None

Presentations: Numerous National Meetings