Na-Battery Development at PNNL

- Vincent Sprenkle, John Lemmon, Xiaochuan Lu, Guosheng Li, Jun Cui, Jin Yong Kim, Brent Kirby, Nathan Canfield, Dave Reed, Eric Mast, Richard Pearson, Kerry Meinhardt, Jeff Bonnett, Greg Coffey, Jirgal Mansonav.

Progression of Planar Sodium Battery Technology

Gen 1:
- High Temperature (250-300°C)
- High Volume manufacturing process
- Modular design, tunable power and energy, multi-market application.

Gen 2:
- Intermediate Temperature (110-250°C)
- Lower cost materials, additional sealing technologies available
- Ni free cathode.
- Requires electrolyte and catholyte development.

Gen 3:
- Low Temperature (RT -90°C)
- Approach to Na-ion (polymer membrane)
- Anode materials
- High energy capacity cathode.

Dr. Yuyan Shao 9:00 am
Acknowledgements

- ARPA-e DOE Award Number: DE-AR0000045
 - Dr. Mark Johnson, Dr. Dave Danielson

- DOE-OE Energy Storage Program,
 - Dr. Imre Gyuk

- PNNL internal LDRD Funding
EaglePicher Technologies- PNNL

Planar Na-Beta Batteries Development for Renewable Integration and Grid Applications
Eagle-Picher/PNNL Path to Planar Na Battery

3.0cm² Button Cell

Materials development and performance testing.

64cm² XL-Button Cell

Materials scale-up with large-scale performance and life testing.

➢ 3 year program to scale up and demonstrate planar Na-battery technology.

Multicell Planar Stack

Manufacturing friendly components and fabrication techniques.

200cm² Stack

➢ Tubular Na–Metal Halide chemistry demonstrated > 1000 cycles at high DOD.

➢ Decrease capital cost by moving to high volume planar manufacturing. Planar technology has higher volumetric power density than tubular architecture

➢ Increase cycle life by reduced temperature operation.
Basic Na-NiCl₂ Battery Chemistry

Charging Reaction

\[2e^- + Ni + 2NaCl \rightarrow 2Na + NiCl₂\]

Discharging Reaction

\[2Na + NiCl₂ \rightarrow 2e^- + Ni + 2NaCl\]

Key elements
- 2.58 V OVC
- ~3.0 V cutoff voltage for charging
 - Increase R from NiCl₂
 - Melt degradation.
- 1.8 V cutoff on discharging
 - Al plating from melt
- Typically 20 – 80% SOC swing.

PNNL efforts focused on
- Scale-up of BASE fabrication process.
- Development of durable glass seals capable of withstanding melt.
- Demonstrating larger scale 64 cm² cells.
- Cathode chemistry development to improve durability at higher specific energy density.
- Transition technology to EP.

Cathode
1. Ni
2. NaCl
3. NaAlCl₄
4. NiCl₂

Anode Current Collector

BASE

Anode Compartment

Na

Cathode Current Collector
BASE properties are function of fabrication, composition, and processing conditions.

64 cm² BASE sample glass sealed to an alumina ring prior to application of electrodes and resistivity test.

- Critical to understand impact of process conditions on flexural strength and conductivity.
- Goal: Maintain > 0.03 S/cm at 300 °C with RT flexural strength > 400 MPa flexural strength.
Progress of 64 cm² cell

- 64 cm² cell - 100 whr/kg at 1C - 91% efficiency - 280°C for over 700 cycles
- No capacity fade for first 800 cycles.

64 cm² cell, 100 Whr/kg at 1C - 280°C

64 cm² cell, 150 Whr/kg at C/4 - 280°C
EaglePicher – PNNL
Next Steps

- Assemble and test multicell 64 cm² stack – 150 Whr/kg of active cathode
- 1000 hrs durability of seal
- Larger scale cells running at 200 Whr/kg of active cathode.
- 5 kW module
Intermediate Temperature Sodium Battery Technology

Gen 1:
- High Temperature (250-300°C)
- High Volume manufacturing process
- Modular design, tunable power and energy, multi-market application.

Gen 2:
- Intermediate Temperature (110-250°C)
- Lower cost materials, additional sealing technologies available
- Ni free cathode.
- Requires electrolyte and catholyte development.

Gen 3:
- Low Temperature (RT -90°C)
- Approach to Na-ion (polymer membrane)
- Anode materials
- High energy capacity cathode.
Goal: To demonstrate Na-metal halide battery operated at ≤ 200°C

- 64 cm² cell with comparable performance compared to current cells operated at 280°C

Technical Challenges

- Catholyte and Cathode Chemistry
- Low-resistance BASE
- Na wetting at lower temperatures
- Seal and new cell design
Low Temperature Catholyte Development

Additions to NaAlCl₄

- Decrease T_m of catholyte by 20 - 40°C
- High ionic conductivity < 200°C with ≥ 25% salt replacement.
- Does not impact electrochemical stability of catholyte.
Goal is to minimize electrolyte resistance while retaining sufficient strength for larger scale planar batteries.

- 50 µm β” electrolyte on porous support
- Currently focused on determining strength – porosity relationship.
Low Temperature Na wetting

- As-prepared BASE shows extensive hydration after exposure to air. Wetting angle > 90° for all temperatures studied and poor adherence.
- Vacuum treated BASE shows improved wetting and adherence.
- Wetting angle > 130° at 250°C - significant issues for low temperature operation?

Na drop showed no adherence to β” surface
→ Na rolled off surface
θ ~ 180°

T = 250°C

T = 300°C

θ ~ 130°

Treated BASE
425°C – 60 hr vacuum

θ ~ 100°

Na drop showed no adherence to β” surface
→ Na rolled off surface
θ ~ 180°

T = 325°C

θ ~ 90°

Untreated BASE

Na drop showed no adherence to β” surface
→ Na rolled off surface
θ ~ 180°

T = 350°C

θ ~ 75°
Intermediate Temperature Na-S

Goal: Develop 150 – 200°C temperature Na – S battery which can:
- Less corrosive environment
- Built in discharge state and charged on site
- Can withstand multiple freeze/thaw cycles.

Sulfur Solubility in Various Organic Solvents (wt.%)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Boiling point (°C)</th>
<th>25°C</th>
<th>50°C</th>
<th>100°C</th>
<th>150°C</th>
<th>200°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>tri(ethylene glycol) dimethyl ether</td>
<td>216</td>
<td>------</td>
<td>0.5</td>
<td>2.5</td>
<td>7.0</td>
<td>------</td>
</tr>
<tr>
<td>tetra(ethylene glycol) dimethyl ether</td>
<td>275</td>
<td>0.16</td>
<td>1.01</td>
<td>3.0</td>
<td>7.0</td>
<td>------</td>
</tr>
<tr>
<td>di(ethylene glycol) dibutyl ether</td>
<td>256</td>
<td>------</td>
<td>------</td>
<td>0.5</td>
<td>1.5</td>
<td>------</td>
</tr>
<tr>
<td>Dimethylaniline</td>
<td>194</td>
<td>3.37</td>
<td>6.92</td>
<td>38.4</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>propylene carbonate</td>
<td>242</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>ethylene carbonate</td>
<td>244</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
</tbody>
</table>
Na-Metal Halide Concepts (non-Ni)

- Goal: Replace highest cost material component (Ni) with lower cost metals with improved performance.

ZEBRA type chemistry: insoluble MH

\[\text{Ni} + 2\text{NaCl} \rightarrow 2\text{Na} + \text{NiCl}_2 \text{ (charge)} \]
\[\text{NiCl}_2 + 2\text{Na} \rightarrow 2\text{NaCl} + \text{Ni} \text{ (discharge)} \]

![Ni ↔ NiCl₂ (insoluble)](image)

Metal coated chemistry: soluble MH

\[\text{EC/M}_x + \text{NaCl} \rightarrow \text{Na} + \text{M}_x\text{Cl}_y + \text{EC} \text{ (c)} \]
\[\text{EC} + \text{M}_x\text{Cl}_y + \text{Na} \rightarrow \text{NaCl} + \text{EC/M}_x \text{ (d)} \]

![EC ↔ EC/Mₓ Coated] Mₓ Coated → MₓClₙ (soluble)

![Graph showing I, A vs E, V](image)

Working electrode: glassy carbon
Counter electrode: glassy carbon
Scan speed: 100 mV/s
Temperature: 125°C

![Graph showing Capacity vs Cycle](image)

No NaCl → Saturated NaCl

ZEBRA type chemistry: insoluble MH

Metal coated chemistry: soluble MH

Internal DOE EED LDRD Funded FY2010, J. Lemmon, G. Li and X. Lu
Intermediate Temperature Na-Air with BASE

Goal: Improve performance, low cost alkali metal – air.
Path: Improve solubility of Na$_x$O$_y$ products in cathode with higher temperature.

3.0cm2 Button Cell

Replace metal cathode with temperature stable air cathode.

Cell Characteristics:
- Temperature: 140°C
- OCV: 3.2V vs Na
- Current: 0.15mA/cm2.

Summary:
- High IR from BASE electrolyte.
- Cycled in air, capacity decreases.
- Overpotential on charge higher than Li.
- Overpotential increase rate lower than Li.

Acknowledgements

- ARPA-e DOE Award Number: DE-AR0000045
 - Dr. Mark Johnson, Dr. Dave Danielson
- DOE-OE Energy Storage Program,
 - Dr. Imre Gyuk
- PNNL internal LDRD Funding