Development of an Integrated Power Controller Based on HT SOI and SiC

Joseph A. Henfling, Stan Atcitty, Frank Maldonado, Sandia National Laboratories

SAND 2010-7658C

Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy under contract DE-AC04-94AL85000.
Overview

• Program Goals
• Accomplishments
• Design Details
• Test Results
• Conclusions
• Future work
Project Goals

• Design HT power controller that can be integrated into a single module
 – Benefits include:
 • Size reduction of power controllers
 – Integration of the SOI based controller with (near) SiC power devices
 • Ease thermal management requirements
 • Increase reliability
 – Designed using HT components and elimination of board-level interconnects
 • Increase efficiency
 – Optimized to fully exploit the benefits of using SiC technology in power controllers
 • Can reduce energy losses by 3-4%
 • High voltage capable designs
• Establish commercialization path to quicken the adaptation of energy-saving SiC technology

HT - High Temperature
SOI – Silicon-on-Insulator
SiC – Silicon Carbide
JFET – Junction Field-Effect Transistor
PWM – Pulse Width Modulation
MCM – MultiChip Module
Sync for power line

Input DC Voltage (up to 1000 Volts)

60 Hz Sine Wave Reference

ADC

Level Shifter

FPGA/EEPROM

Gate Controller and System Monitor

ADC

Level Shifter

PWM

JFET Gate Drive

H Bridge

JFET Gate Drive

JFET Gate Drive

JFET Gate Drive

Load

Smart Grid Interface

Blue – Control board
Red – Power board
Green – Outside Components
Phase I Accomplishments

Program Start Date FY09

• Successfully demonstrated a prototype microcontroller-based HT power controller at 240°C
 – Included basic safety functions to protect power devices

• Demonstrated SOI gate drive for the JFET power devices

• Successfully tested SOI MESFET (MEtal-Semiconductor-Field-Effect-Transistor) gate drive

By combining SOI control and drive circuits with SiC, an intelligent system capable of operation up to 240°C (JFET junction temperature approaching 300°C) was successfully demonstrated
Phase II and III Accomplishments

• “Fine-Tune” prototype design
 – Designed, fabricated and tested a version 2 board with optimized system efficiency
 • Enhanced high side gate drive of the H bridge
 • Mitigated the current spikes
 • Minimized the switching “dead time”
 • Optimized the output filter
 • Improved microcontroller design
 – Better control of the power devices
 – Active feedback investigated; refinement required

• Started evaluation of APEI (Arkansas Power Electronics International) power module
 – Verified compatibility with Sandia’s controller
 – Performed 5 kW tests at APEI (room temperature)
 – Initiated oven tests with modules

• Contracted with Honeywell to program HT FPGA (Field Programmable Gate Array) with Sandia developed code – in progress

• Contracted with Life Bioscience to fabricate HT circuit board – in progress
Enhanced Performance - Improved Gate Drive

- Enhanced switching methodology
 - Three-level continuous PWM
 - Voltage harmonics are both decreased in amplitude and increased in frequency
 - Reduced output filter size requirements (to achieve a given current THD)
 - Increased efficiency

Prototype had PWM Gate Drive at Q1 and Q3; 60Hz at Q2 and Q4; Discontinuous PWM

Enhanced circuit has PWM Gate Drive at Q1, Q2, Q3 and Q4; Three-level continuous continuous PWM
Enhanced Performance - Improved Gate Drive

Scope Image of PWM

Reference voltage (Red)

PWM (Yellow)

Output current (Red)

Reference voltage (Gold)

Output Voltage (Yellow)

Scope Image of Output waveform
Test Results – Initial Testing at APEI

APEI Power Supplies

Sandia Controller

APEI Power module with integrated gate drive

APEI Modules
Initial Tests with APEI Power Module

Testing APEI modules with Sandia’s controller at elevated temperatures
Tests with JFET Power Board

JFET Power Devices and Gate Drive

Resulting waveform at room temperature

Resulting waveform at 200ºC
Single Module Solution

Investigating potentially utilizing same substrate for power devices and MultiChip Modules (MCM)

Aluminum Nitride or SiC Substrate
New Extreme HT-HV Circuit Boards

- % start
- G90,G71,G54
- M5, M6
- G92 0.001,0.200,-0.200
- G1 0.001,0.570,-0.200
- G1 0.456,0.200,-0.200
- G1 0.456,0.234,-0.200

Standard Schematic ➔ Optical Image ➔ NEW Convert Image to CNC G-Codes

New HT Lead Free Solder ➔ New Metalize Circuit Traces ➔ New Fab SiC Circuit Board
Conclusion

- Lab tested an enhanced controller board and a power board consisting of JFET power devices with gate drive
- Completed initial testing at APEI using APEI’s power modules, LT gate drive power supply and Sandia’s controller; 5kW tests
- Completed initial testing at Sandia at elevated temperatures
- In progress: conversion of Sandia code into a HT FPGA (Honeywell)
- In progress: fabrication of HT circuit board
Future Plans

- Evaluate APEI’s HT gate drive power supplies
- Investigate utilizing APEI’s JFET power module with HT gate drive power supply and steps required to integrate into single module
- Refine feedback control
- Complete the design for MCM controller
- Evaluate Honeywell HT SOI FPGA
- Evaluate HT circuit board
- Demonstrate “next step” in single module solution (Sandia or APEI power boards)
Collaborative Effort with Academia and Industry

• DOE Funded
 – Participants include:
 • Sandia (Lead)
 • Arizona State University (Circuit simulation, fabrication of test circuits using HT) MESFET – JFET gate drive) - Phase I
 • University of Maryland – HT lead attach
 • PermaWorks (Inverter design simulation and fabrication of HV supply) – Phase I
 • APEI (Power modules, HT power supplies, thermal analysis) – Phase II, III
 • Life BioScience (HT circuit boards) – Phase II, III
 – COTS suppliers
 • Honeywell SSEC
 • Cissoid
 • SemiSouth

The authors would like to thank DOE Energy Program and Imre Gyuk for financial support of this research.