Nanomaterials-Based Electrodes for Energy Storage Devices with Fast Rate Capabilities

Amit Singhal and Ganesh Skandan
Nanopowder Enterprises Inc.

Dr. Glenn Amatucci
Telcordia Technologies

Acknowledgments

US Department of Energy, Energy Storage Research Program
US DOE Small Business Innovative Research (SBIR)
DOE 2002 Project
NEI Markets
-Nano enables the application of-

- Polymer Nanocomposites: coatings and bulk
 - Nanoparticles for Drug Delivery
 - Nanoparticle laden fluids
 - Specialty Nanopowders
 - Rechargeable Batteries
High Rate Energy Storage Devices
Goals of the Program

• Develop nanostructured anodes for a new type of high rate energy storage device called Asymmetric Hybrid Cell

• Fabricate prototype Asymmetric Hybrid Cell with following features-
 – Capable of working efficiently over a wide temperature range (-30°C to 70°C)
 – Long cycle life (> 100,000 cycles)
 – Power density as good as that of a supercapacitor
 – Energy density comparable to, or higher than, that of Pb-acid batteries
 – Fast rate of charge (complete charge in 1 min.)
Concept of High Rate
Asymmetric Hybrid Cell

A thin, flexible, highly manufacturable and non-aqueous plastic laminar device

Ultrafine Electrodes Exhibit Faster Rate Capabilities

- Li$_4$Ti$_5$O$_{12}$ Electrodes -
Long Cycle Life of Prototype Hybrid Cells

- **Cathode**: High surface area activated carbon (700 – 2000 m²/g)
- **Anode**: Ultrafine Li₄Ti₅O₁₂; **Electrolyte**: 1M LiPF₆ in 2:1 volume ratio of ethylene carbonate: dimethyl carbonate
- **Dimensions**: 6” X 4” (Courtesy Telcordia Technologies)
Rationale for Lithium Intercalating Anode Materials

Intercalation voltage
Carbon: ~ -3V SHE
Li$_4$Ti$_5$O$_{12}$: -1.5V SHE
WO$_2$: - 2.3V SHE

Carbonaceous materials are unsafe to operate in high rate applications, because of the risk of Li plating.
WO₂ has the Highest Output Voltage

Use of WO₂ anodes will enhance the energy density of asymmetric hybrid cell.

Courtesy Telcordia Technologies
Low Temperature Synthesis

The diagram shows the X-ray diffraction patterns for different temperatures:
- Green line: 600 °C
- Blue line: 550 °C
- Red line: 500 °C

The peaks indicate the presence of WO₂ at these temperatures.
Spherical Particles with Ultrafine Crystallites

Spherical particles will result in high packing density of electrodes
Surface area = 15 m²/g
Ultrafine WO₂ Powders Are Electrochemically Active

Discharge rate: 22.72 mA/g

Capacity (mAh/g)

Time (hr)

Cycle
Electrochemical Data in An Asymmetric Hybrid Cell

- Spring
- Current Collector
- Counter Electrode (a)
- Ref. Electrode (b)
- Separators
- Working Electrode (c)
- Plungers

Potential vs. Ag quasi reference or full Output V

- Full cell output V: 60 mAh/g
- Activated C vs. ref
- WO_3 vs. ref

Time (hr)
Program Overview

- **NEI**
 - Develop nanostructured anode powders
 - Scale up the synthesis process

- **Telecordia**
 - Fabricate and characterize prototype asymmetric hybrid cell

- **Battery Manufacturers**
 - Partner with battery manufacturer to produce Asymmetric Hybrid Batteries

- **Sandia National Laboratories**
 - Research support and scientific input

- **Manufacturers of Energy Storage Systems**

- **Supply anode materials**