Advanced Energy

Advanced Hybrid Controller

Phase II

Dr. Robert Wills, P.E.
Chief Technology Officer
Advanced Energy
Wilton, NH 03086

Acknowledgements: U.S. DOE Energy Storage Program
Sandia National Laboratories
Garth Corey & John Boyes

WWW.ADVANCEDENERGY.COM
About Advanced Energy

- Inverter Manufacturer based in Wilton, NH
- 28% owned by Plug Power
- More than 2000 GC-1000 inverters in the field.
- 200 10kW inverters shipped for Plug Power fuel cell systems this year
- MM-5000 inverter started shipping in September
- $3.8 Million in sales in 2001
Advanced Energy

The Power of Choice™

ACT—Our World Class Manufacturing Partner

- All Manufacturing is handled by ACT in Marlboro, MA (a 45-minute drive from AEI)
 - 200K sq. ft manufacturing
 - ISO 9001 qualified
 - Full Box Build/direct order fulfillment
More about AEI

- Hybrid systems to 150 kW in the past
- Worked on the development of IEEE 929, 1547, and the New York Std Interconnect Requirements.
- Member of the National Electrical Code Panel 14 (Photovoltaics and Fuel Cells).
- Fundamental Anti-Islanding Patent
Advanced Energy

The Multimode 5000

- 3 kW & 5 kW Power Management Systems
- The one box solution to PV power management:
 - Sells excess power to the grid
 - Provides reliable power when the grid fails
 - Interfaces with a backup generator
 - Integrated Controller
100A MPPT DC-DC Converter ~ 5kW PWM sinewave inverter
- Connections:
 - DC: PV, Battery
 - AC: Load, Grid, Generator
 - Comm: Opto-isolated RS485
 - Control: Auto Generator Start
The Advanced Hybrid Controller Project

Aim

To improve hybrid & minigrid power system performance by:

» Simplifying Integration
» Increasing Reliability
» Reducing Cost
» Increasing Flexibility
Summary of Phase I Results

- Identified need for:
 - A Standard Component Communications Protocol
 - Separation of Inverter and Controller
- Droop mode control is the optimal means for paralleling multiple units in standalone mode
- Heuristic optimization of single-unit systems
Advanced Energy

The Power of Choice™

Phase II Tasks

1. A single-unit AHC controller with working hardware
2. Protocols for controller to inverter, and remote controller communications
3. Global optimization program. Analyzes data logs, determines optimum operational setpoints
4. Minigrid simulator in object oriented (C++) code. Test bed for aggregation and optimal SA & DR dispatch algorithms
Advanced Hybrid Controller (AHC)

- Intel 386 with DOS
- ERTOS real time operating system
- 8+ MB data storage

- RS-485 Local Communications
- RS-232 for console or modem
- Ethernet port
- Two versions – rack mount and modular
- Hardware cost $200-$400 in low quantity
Demonstration Hybrid System Components

- PV Array
- Inverter
- Batteries
- AHC
- Load
- Generator
The AHC has Internet Connectivity!

- TCP/IP Protocol Stack
- FTP (file transfer)
- HTTP (Web page data display)
- Telnet (remote console control)
- PPP dial out to Internet Service Provider (ISP)
- PPP dial in from any computer (AHC is PPP server)
- *Allows connection via local ISP (continuously or periodically) for control and monitoring*
As DR becomes more widespread, the need for communications will increase. Using ISPs and the Internet will eliminate the need for private networks or modem banks.

This is a much lower cost alternative for utilities as the infrastructure is already in place.

Encrypted data can be securely transferred over the internet.
DR Control Example

1000 PV systems with 10kWh of storage each

10 MWh of Dispatchable Energy Storage

Monitoring Data

Schedule File

ISP

Utility Data Center

Schedule

Data

Export from 4 to 6 PM

Unit # 1234 failed

1000 PV systems with 10kWh of storage each
DR Control Example – Economic Analysis

- Customer buys system for the UPS / home autonomy function. Purchase supported by State incentive program. Battery is customer owned
- Customer benefits from free system monitoring
- Utility pays for communications equipment
- Up to 100 cycles per year to 50% DOD will have little impact on battery life (500 kWh / year)
- Marginal cost is communications equipment, maintenance & management (E.g. $250 over 10 years = $25/year)

Cost/kWh could be as low as $0.05/kWh
AHC can easily be programmed with advanced charging algorithms such as partial state of charge.

Standard & Peukert corrected AH counting algorithms.

Historical estimates of load and solar resource for minimal PV “spillage”
Potential Markets

- **Remote & Village Power**
 - Half the world’s population does not have electricity (2+ billion people)

- **DR Monitoring and Control**
 - Distributed Energy Storage
 - Field node for DR Aggregation & resource scheduling and optimization
Task 2: Communications Protocols

- **Internal Problem**
 - Controller to inverter protocol definition is complete.
 - Low Security requirements

- **External Problem**
 - Internet is best solution
 - Encryption is key
Task 3: Global Dispatch Optimization

- Two approaches
 - setpoint optimization with rule-based controller
 - system optimization
- Increases in processing power make system-level optimization possible
- Exploring genetic algorithms for this application
 - Using same method to optimize DR dispatch as was used to optimize our own evolution
- Working with students at Dartmouth College
Combined cost curves can give the dispatch function multiple minima.
Task 4 – Mini-grid Simulator

- Test bed for DR Aggregation & Optimal Dispatch
- Original application was for remote stand-alone systems with multiple generators
- Also applicable to mini-grids
- Supports intentional islanding of mini-grid when central generation fails (e.g., facility power)
- Will evolve into an aggregation and dispatch software product
Minigrid Simulator Object Model

Power System

Devices

Generation

Storage

Loads

Device

GC

ES

GEN

LOAD

GRID
Simulator Capabilities

- Simulates multiple:
 - Grid Connect Inverters (GC type)
 - Bi-directional Inverters with Energy Storage (ES type)
 - Generators (Gen Type – Diesel, Fuel Cell, Microturbine, etc)
 - Loads

In Grid-Connect and Stand-Alone modes.
Simulator Capabilities

- Data file input or synthetic data for:
 - Solar, Load, Grid Cost & Device Availability
- Device sizing database
- HTML log file
- Manual selection of device availability
- Graphical & CSV file output
In Grid Connect mode
- Any generation with lower cost than grid is on-line.
- Recharge energy storage if “off peak”

In Stand-Alone mode
- Bring on enough generation to satisfy load, lowest cost first
- If insufficient, discharge ES. If excess, recharge ES
Simulator Demonstration