# A Viable Pathway from Durability to Reliability and Safety

#### Boryann (Bor Yann) Liaw, Ph.D. FECS

Energy Storage and Advanced Vehicles Department Idaho National Laboratory Idaho Falls, ID 83415

February 22-23, 2017 Meeting the Challenge: 2017 ESS Safety Forum Santa Fe, NM



00



#### Vehicles, Energy Storage & Infrastructure

#### Development of Next-Generation Low Cost / Reliable Batteries:

- Leverage unique INL capabilities to lead Performance
  Science
- Foundation: Battery Testing Center & Advanced Vehicle Testing
- Growth via strong partnerships with:
  - DOE-EERE (USABC)
  - Automotive OEMs
  - Battery Developers
- Impact: Enabling / accelerating next gen low cost, safe and reliable batteries

#### Performance Science: Half-Cell to Vehicle & Pack







## Performance, durability, reliability and safety in a proper perspective – Risk assessment & management





#### Safety relies on proper cell design and deep understanding of cell performance

Materials selection & processing Electrode architecture

Cell balance Manufacturing quality

> System control and management Preventive measures



## Design-Build-Test Paradigm

 Forward-looking design principles – Insufficient to enable failure mode and effect analysis (FMEA)



Half-Cell / Coin



Table II-5. U.S. Advanced Battery Consortium Goals for Electric Vehicle Batteries

| Primary Criterion                                                                                                                                   | Long-term goals <sup>6</sup> (2005-2008)               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Power Density, W/L                                                                                                                                  | 460                                                    |
| Specific Power, W/kg (80% DOD/30 sec)                                                                                                               | 300                                                    |
| Energy Density, Wh/L (C/3 discharge rate)                                                                                                           | 230                                                    |
| Specific Energy, Wh/kg (C/3 discharge rate)                                                                                                         | 150                                                    |
| Life, years                                                                                                                                         | 10                                                     |
| Cycle life (cycles)                                                                                                                                 | 1000 (80% DOD)<br>1,600 (50% DOD)<br>2670 (30% DOD)    |
| Power and capacity degradation <sup>7</sup><br>(% of rated spec)                                                                                    | 20%                                                    |
| Ultimate price <sup>8</sup> , \$/kWh<br>(10,000 units @ 40 kWh)                                                                                     | <\$150 (desired to 75)                                 |
| Operating environment                                                                                                                               | -30C to 65 C                                           |
| Recharge time                                                                                                                                       | < 6 hours                                              |
| Continuous discharge in 1 hour (no failure)                                                                                                         | 75% (of rated energy capacity)                         |
| Secondary Criteria                                                                                                                                  | Long-term goals (2005-2008)                            |
| Efficiency (C/3 discharge and C/6 charge <sup>9</sup> )                                                                                             | 80%                                                    |
| Self-discharge                                                                                                                                      | <20% in 12 days                                        |
| Maintenance                                                                                                                                         | No maintenance. Service by qualified personne<br>only. |
| Thermal loss                                                                                                                                        | Covered by self-discharge                              |
| Abuse resistance                                                                                                                                    | Tolerant. Minimized by on-board controls.              |
| Specified by contractor: Packaging constraints,<br>Environmental impact, Safety, Recyclability,<br>Reliability, Overcharge/over-discharge tolerance |                                                        |



Sources: various literature documents







# **Cell Variability – Origins**





INTERNATIONAL JOURNAL OF ENERGY RESEARCH Int. J. Energy Res. 2010; **34**:216–231 Published online 17 December 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/er.1668

#### Origins and accommodation of cell variations in Li-ion battery pack modeling

Matthieu Dubarry, Nicolas Vuillaume and Bor Yann Liaw\*

Hawaii Natural Energy Institute, SOEST, University of Hawaii at Manoa, 1680 East-West Road, POST 109, Honolulu, HI 96822, U.S.A.

#### SUMMARY

Rechargeable battery industry will see significant growth in the use of battery systems for portable devices and power electronics, renewable energy storage, power systems for transportation, and telecom backup power applications. Despite such promising market sentiment, the battery system management remains as a challenging issue to be resolved in order to provide a safe and reliable power and energy storage system. Here we report advancement in the battery management approach by providing a solution to analyze battery performance variations in a lot of batteries produced from the same manufacturing process. A lot of 100 Li-ion cells were analyzed in order to quantify the inherent cell variations associated with cell manufacturing process and test protocol. Both statistical and electrochemical analyses were used to characterize and quantify the capacity variations among the cells along with other parameters that can be readily derived from the test results. Information extracted from a minimal testing of the cells in the lot and more intensive characterizations on a few cells including one as the nominal sample cell allows the establishment of a single cell model (SCM), based on a generic equivalent circuit, with high accuracy in predicting cell performance. The analyses also permit a carefully crafted logic development of how to separate the origins that cause the cell variations in performance. Such separation of the attributes enable a proper tuning of the cell parameters in the model, which allows the accommodation of cell variations in a battery pack model to handle most of the imbalance issues. A careful validation of the SCM to predict performance of any arbitrary cell in the lot with high accuracy was demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.

KEY WORDS: intrinsic cell imbalance; battery pack management; equivalent circuit model; statistical analysis; battery pack

# Idaho National Laboratory

# Experimental

- 100 commercial AAA size 300 mAh Gr/LiCoO<sub>2</sub> cells.
- Charging regime: CC @C/2 + CV @4.2V and 0.5 hrs cutoff
- Discharge regime: C/5, C/2 (RPT: C/25, C/3, 1C and 2C)
  - High rate: Solartron 1470
  - Low rate: Bio-logic VMP3
- Rest: 3 hrs → relaxed cell voltage (RCV)
- SOC =  $Q/Q_{25}$   $\rightarrow$  pseudo-OCV vs. SOC curve
- SOC determination by RCV



#### Speciation in cell metrics to performance variations







EOC to BOD



#### **BOD to EOD**





## EOD to Capacity





## **Capacity normalization to SOC**





#### Cell variability in SOC during testing





Int. J. Energy Res. 2010; 34:216-231

#### Capacity ration (mAh/%SOC) 25 20 100 15 Cell count 99 10 ዮ SOC range (%) $\cap$ 5 $\cap$ 98 0 **8**.56 8.64 8.8 9.04 8.72 8.88 8.96 9.12 9.2 (a) Weight (g) 97 25 0 96 Ο C/2 20 Ο C/5 Ο 95 ⊾ 285 С 310 290 295 300 305 Cell count 15 Capacity (mAh) (a) 25 10 20 Cell count 15 5 10 5 0 2.9 2.95 3 3.05 3.1 0 **283** 289 295 301 307 Capacity ration (mAh/%SOC) (b) $Q_2$ (mAh) (a)



#### Impacts from DCR on SOC





#### Impacts from DCR on capacity





#### High fidelity of cell model and simulation





#### Every cell in the pack can be modeled precisely





# Cell variability in aging & capacity fading

 Even with the best state-of-the-art cell design and manufacturing, variability in endurance remains as an issue that impacts durability, reliability and safety





# **Quantify Cell Variability over Aging**

#### 51 commercial G || LCO + NMC 2.8 Ah 18650 cells





# Idaho National Laboratory