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Vehicles, Energy Storage & Infrastructure

Development of Next-Generation Low Cost /

Reliable Batteries: Performance Science:
* Leverage unique INL capabilities to lead Performance Half-Cell to Vehicle & Pack
Science

* Foundation: Battery Testing Center & Advanced
Vehicle Testing

« Growth via strong partnerships with:
o DOE-EERE (USABC)
o  Automotive OEMs

o  Battery Developers ’ N
« Impact: Enabling / accelerating next gen low cost, Half-Cell / Coin **Q\\\
safe and reliable batteries \/
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Performance, durability, reliability and safety In
a proper perspective — Risk assessment &

management

Policies & regUIationS \ Education, training &
* Protocols & procedures
 Control, management & auditing enforcement

Human Factors:

Environmental Factors: * Duty cycle &

Manuals e Mechanical schedule

* Installation * Electrical * Frequency

» Operation ° Thermal o Habit

System e Chemical » Preference

Device . ...
Durability Reliability Safety

Catastrophic Events
Abuse Tolerance
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Safety relies on proper cell design and deep
understanding of cell
performance

Materials selection & processing
Electrode architecture

Cell balance
Manufacturing quality

System control and management
Preventive measures
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Design-Build-Test Paradigm

» Forward-looking design principles — Insufficient to enable failure mode
and effect analysis (F
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Table II-5. U.S. Advanced Battery Consortium Goals for Electric Vehicle Batteries

Primary Criterion Long-term goals® (2005-2008) Heatsink Piates
Power Density. W/L 460
Specific Power, W/kg (80% DOD/30 sec) 300 n lon Priemate Coll
Energy Density, Wh/L (C/3 discharge rate) 230
Specific Energy. Wh'kg (C/3 discharge rate) 150
Life, years 10
1000 (80% DOD)
Cycle life (cycles) 1,600 (50% DOD)
2670 (30% DOD)
Power and capacity degradation’ 20%
(% of rated spec) °
Ultimate price®, $kWh .
(10,000 s @ 40 KWh) <$150 (desired to 75)
Operating environment -30Cto65C
Recharge time < 6 hours
Continuous discharge in 1 hour (no failure) 75% (of rated energy capacity)
Secondary Criteria Long-term goals (2005-2008)
Efficiency (C/3 discharge and C/6 charge’) 30%
Self-discharge =20% in 12 days
Mai e No maintenance. Sen::leylry qualified personnel
Thermal loss Covered by self-discharge
‘Abuse resi Tolerant. Minimized by on-board confrol Pack
Specified by contractor: Packaging constraints,
Environmental impact, Safety. Recyclability.
Reliability, Overcharge/over-discharge tolerance

Sources: various literature documents



Engineering approach

Durability
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Safet

Insulator
Gasket

Safef ven:\

CID

Separator

Terminal plate  Cathode pin

Cathode led /

Top cover

nsulator case

[ Spring plate

‘; Cathode

Anode can

Anod¢

Inerconnect Cover

Laser Welded
BusBar
Control
Electrenics
Elrctronics

Lt lon Prismate Col

Prognostics

Table II-5. U.S. Advanced Battery Consortium Goals for Electric Vehicle Batteries

Primary Criterion Long-term goals® (2005-2008)
i 460
300
230
150
10
1000 (80% DOD)
Cycle life (cycles) 1,600 (50% DOD)
2670 (30% DOD)
Power and capacity degradation” 20%
(% of rated spec) °
(10,000 units @ 40 kWh) <$150 (desired to 75)
Operating environment -30Ct0 65C
| Recharge time = 6 howss
Continuous di: in, (no failure 75% (of rated energy capacity)
v Criteria Long-term goals (2005-2008)
1ency (C/3 di and C/6 80%
Self-di: <20% in 12 days

No maintenance. Service by qualified personnel
only.

Covered by self-discharge
Tolerant. Minimized by on-board controls.




Cell Variability — Origins

Crystal Structure \ { Morphology
! s W Architecture

Chemistry:
Redox Couple
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INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Int. J. Energy Res. 2010; 34:216-231

Published online 17 December 2009 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/er.1668

Origins and accommodation of cell variations
in Li-ion battery pack modeling

Matthieu Dubarry, Nicolas Vuillaume and Bor Yann Liaw™

Hawaii Natural Energy Institute, SOEST, University of Hawaii at Manoa, 1680 East-West Road, POST 109, Honolulu, HI 96822, U.S.A.

SUMMARY

Rechargeable battery industry will see significant growth in the use of battery systems for portable devices and power
electronics, renewable energy storage, power systems for transportation, and telecom backup power applications.
Despite such promising market sentiment, the battery system management remains as a challenging issue to be resolved
in order to provide a safe and reliable power and energy storage system. Here we report advancement in the battery
management approach by providing a solution to analyze battery performance variations in a lot of batteries produced
from the same manufacturing process. A lot of 100 Li-ion cells were analyzed in order to quantify the inherent cell
variations associated with cell manufacturing process and test protocol. Both statistical and electrochemical analyses
were used to characterize and quantify the capacity variations among the cells along with other parameters that can be
readily derived from the test results. Information extracted from a minimal testing of the cells in the lot and more
intensive characterizations on a few cells including one as the nominal sample cell allows the establishment of a single
cell model (SCM), based on a generic equivalent circuit, with high accuracy in predicting cell performance. The analyses
also permit a carefully crafted logic development of how to separate the origins that cause the cell variations in
performance. Such separation of the attributes enable a proper tuning of the cell parameters in the model, which allows
the accommodation of cell variations in a battery pack model to handle most of the imbalance issues. A careful
validation of the SCM to predict performance of any arbitrary cell in the lot with high accuracy was demonstrated.
Copyright © 2009 John Wiley & Sons, Ltd.

KEY WORDS: intrinsic cell imbalance; battery pack management; equivalent circuit model; statistical analysis; battery pack
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EX p er I m e n tal Int. J. Energy Res. 2010; 34:216-231

100 commercial AAA size 300 mAh Gr/LICoO, cells.
Charging regime: CC @C/2 + CV @4.2V and 0.5 hrs cutoff

Discharge regime: C/5, C/2 (RPT: C/25, C/3, 1C and 2C)
High rate: Solartron 1470
Low rate: Bio-logic VMP3

Rest: 3 hrs =» relaxed cell voltage (RCV)
SOC = Q/Q,; = pseudo-OCV vs. SOC curve
SOC determination by RCV
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Speciation in cell metrics to performance variations
Int. J. Energy Res. 2010; 34:216-231
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Int. J. Energy Res. 2010; 34:216-231
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EOD to Capacity
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Int. J. Energy Res. 2010; 34:216-231
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Cap aC I ty n O r m al I Zatl O n to SOC Int. J. Energy Res. 2010; 34:216-231
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Cell variability in SOC during testing

Voltage (V)

Int. J. Energy Res. 2010; 34:216-231
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Int. J. Energy Res. 2010; 34:216-231
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I m p aCtS fro m DCR O n SOC Int. J. Energy Res. 2010; 34:216-231
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Impacts from DCR on capacity

Int. J. Energy Res. 2010; 34:216-231
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High fidelity of cell model and simulation

Voltage (V)

l

SOC calculation

ry

Int. J. Energy Res. 2010; 34:216-231
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Every cell in the pack can be modeled precisely

Int. J. Energy Res. 2010; 34:216-231
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Cell variability in aging & capacity fading

* Even with the best state-of-the-art cell design and manufacturing,
variability in endurance remains as an issue that impacts durability,
reliability and safety
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Quantify Cell Variability over Aging

* 51 commercial G || LCO + NMC 2.8 Ah
18650 cells
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