Safety of Li-ion Batteries: A Thermal Engineering Perspective

Ankur Jain
Assistant Professor
Mechanical and Aerospace Engineering Department
The University of Texas at Arlington

Email: jaina@uta.edu, Web: www.uta.edu/mtl/
• **Mission:** To Understand and Optimize Heat Transfer in Engineering and Biological Materials, Processes and Systems.

• **Research directions:** Thermal Measurements and Modeling, Electrochemical Energy Conversion & Storage, Microscale Heat Transfer.

• **Sponsors:**

[Logos of sponsors]
Li-ion Cell: A Multiphysics Multiscale System

- Li-Ion Materials
- Electrode Layers
- Electrode Assembly
- Cells and Battery Packs
- Electrochemical Energy Systems

Length scales: nm, μm, mm, m

Electrical
- Ion Transport
- Potential Generation
- Temperature-Dependent Mobility
- Joule Heating

Electrochemical
- Exothermic Heat Generation
- Temperature-Dependent Reaction Kinetics

Thermal
Thermal Concerns in Li-ion Batteries

- Fundamental Heat Transfer Questions of Much Practical Relevance:
 - How much heat is generated in a Li-ion cell and how?
 - What is the nature of thermal conduction through the Li-ion cell?
 - How does one optimize heat generation and conduction processes?
 - How does one thermally interrogate the cell?
 - How does one reconcile thermal and electrochemical trade-offs?
Outline

1. Non-invasive core temperature measurement *(Thermal x-ray)*

2. Prediction of thermal runaway *(When is a battery at risk of exploding?)*

3. Material-level thermal transport measurements *(Why does a cell get so hot?)*

4. Heat pipe based cooling *(How to passively cool a cell)*
Outline

1. Non-invasive core temperature measurement
 (Thermal x-ray)

2. Prediction of thermal runaway
 (When is a battery at risk of exploding?)

3. Material-level thermal transport measurements
 (Why does a cell get so hot?)

4. Heat pipe based cooling
 (How to passively cool a cell)
Measurement of Internal Temperature

- Surface temperature measurement is a poor indicator of core temperature.

- A non-invasive method for core temperature measurement is very desirable.

- Such ‘x-ray’ capability exists for other physical properties such as stresses, but not for temperature.

Forgez, et al., *J Power Sources*, 2010

Non-Invasive Core Temperature Measurement

• We have shown that the core temperature of a heat-generating cylinder in steady state is given by

\[T_{\text{core}} = \frac{1}{2\pi} \int_0^{2\pi} T_0(\theta) d\theta + \frac{QR^2}{4kr} \]

where \(T_0(\theta) \) is the temperature around the outside surface of the cylinder.

• Similarly, in transient conditions, we have shown that

\[T_{\text{core}}(t) = T_{1,\text{core}}(t) + T_{2,\text{core}}(t) = \left[\frac{QR^2}{4kr} + \sum_{n=1}^{\infty} A_n \exp\left(-\alpha_r \lambda_{0n}^2 \cdot t \right) \right] + \sum_{n=1}^{\infty} B_{0n}(t) \]

where

\[A_n = -\frac{Q}{4kr} \int_0^r \left(R^2 - r^2 \right) \cdot r J_0(\lambda_{0n}r) dr \]

\[B_{0n}(t) = \frac{\alpha_r \lambda_{0n} R J_1(\lambda_{0n} R)}{N_{r,n}} \int_0^t w_{0f}(\tau) \exp\left[-\alpha_r \lambda_{0n}^2 (t - \tau) \right] d\tau \]

\[w_{0f}(\tau) = \frac{1}{2\pi} \int_0^{2\pi} T_0(\theta, \tau) d\theta \]

• These equations show that the core temperature can be determined using appropriate integrals of measured surface temperature, either in steady state or in transient.

Non-Invasive Core Temperature Measurement

- A thermal test cell similar in construction and thermal properties as a 26650 Li-ion cell.
- IR camera for surface temperature measurement.
- Theoretical models from last slide used to determine T_{core} and $T_{\text{core}}(t)$ in various operating conditions.
- Embedded core thermocouple for measurement validation.

Non-Invasive Core Temperature Measurement

- Very good agreement between this measurement method and measurement from embedded thermocouple.

- Able to capture temperature at steady-state and during transients.

- Good agreement for ON-OFF type of heating typical for cyclic charge/discharge.

Core Temperature Measurement in a Li-ion Cell

- 26650 Li-ion cells with embedded thermocouples were assembled.
- Internal temperature was predicted during realistic discharge processes and validated against embedded thermocouple measurements.

Fabrication Steps

Final Cell

Measurements on 26650 Li-ion Cell

- Core temperature is measured on a 26650 cell instrumented with an internal thermocouple, up to 10C discharge rate.

- Good agreement between predicted temperature and internal thermocouple measurement over entire discharge period.

- We are working towards core temperature prediction during thermal runaway.

1. Non-invasive core temperature measurement *(Thermal x-ray)*

2. Prediction of thermal runaway *(When is a battery at risk of exploding?)*

3. Material-level thermal transport measurements *(Why does a cell get so hot?)*

4. Heat pipe based cooling *(How to passively cool a cell)*
Thermal Runaway Prediction

- Heat accumulation in a Li-ion cell results in thermal runaway.

\[
\left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} \right) + \frac{Q(T)}{k_r} = \frac{1}{\alpha_r} \frac{\partial T}{\partial t}
\]

Increasing temperature due to heat generation

Increasing heat generation due to temperature rise

\[
T(r,t) = \sum_{n=1}^{\infty} C_n J_0 \left(\frac{\mu_n r}{R} \right) \cdot \exp \left[\alpha \left(\frac{\beta}{k} - \frac{\mu_n^2}{R^2} \right) \cdot t \right]
\]

Governing Energy Equation

General Solution

- This shows that in order for the cell temperature to stay bounded,

\[
TRN \equiv \frac{\beta \cdot R^2}{k_r \mu_1^2} < 1
\]

\[
\beta = \frac{dQ}{dT}
\]

- TRN is a fundamental, non-dimensional number that governs whether thermal runaway occurs or not.

Experimental Validation

• Experimental data confirm this theoretical prediction for a variety of cases.

• Thermal runaway is seen to occur only when $TRN > 1$.

Battery Behavior in Realistic Conditions

- Electrochemical reactions in a battery follow Arrhenius kinetics.
- Experimental data show that temperature remains bounded while $TRN<1$, but thermal runaway occurs once TRN exceeds 1.
- Data indicates the possibility of pro-active prediction of onset of runaway.

$$Q(T) = Q_0 \exp\left(-\frac{E_a}{R_u T}\right)$$

Prediction of Safe/Unsafe Thermal Design Space

- The experimentally-validated model can predict safe and unsafe regions in the thermal design space.

1. Non-invasive core temperature measurement *(Thermal x-ray)*

2. Prediction of thermal runaway *(When is a battery at risk of exploding?)*

3. Material-level thermal transport measurements *(Why does a cell get so hot?)*

4. Heat pipe based cooling *(How to passively cool a cell)*
Measurement of Material-level Thermal Transport

• Measurements show that thermal conductivity of even the least conducting material in a Li-ion cell is greater than the measured cell-level thermal conductivity.

• This indicates that interfacial thermal resistances in a Li-ion cell may be important.

Vishwakarma, et al., *J Power Sources*, 2014
Measurement of Material-level Thermal Transport

- Separator-cathode thermal contact resistance contributes ~88% of total thermal resistance in a Li-ion cell.

- Measurements in good agreement with acoustic mismatch theory for interfacial phonon transport.

<table>
<thead>
<tr>
<th>Baseline (Experiment A)</th>
<th>Thermal Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>μKm²/W</td>
<td></td>
</tr>
<tr>
<td><1</td>
<td>Current Collector</td>
</tr>
<tr>
<td>11</td>
<td>Cathode</td>
</tr>
<tr>
<td>100</td>
<td>Separator</td>
</tr>
<tr>
<td>840</td>
<td>Separator-Cathode Interface</td>
</tr>
<tr>
<td>951</td>
<td>Total Thermal Resistance</td>
</tr>
<tr>
<td>0.24</td>
<td>$k_{	ext{eff}}$ (W/mK)</td>
</tr>
</tbody>
</table>

Vishwakarma, et al., J Power Sources, 2015
Enhanced Thermal Transport Through Interface Engineering

• Surface modification of separator/cathode resulted in significant reduction in separator-cathode thermal contact resistance.

Vishwakarma, et al., J Power Sources, 2015
Thermal Enhancement without Electrochemical Deterioration

• This approach significantly improves thermal performance while preserving electrochemical performance.

• Large-scale implementation presents additional challenges.

Vishwakarma, et al., J Power Sources, 2015
Summary

• Thermal engineering plays a key role in ensuring safety of Li-ion based electrochemical energy storage devices and systems.

• Optimization of material-level thermal transport is important for device-level and system-level improvements in safety and performance.

• Synergistic partnerships between Universities, National Labs and companies is critical for transformative progress.
Facilities

• Thermal property measurement: Netzsch LFA467, Custom-built 1D Heat Flux System, CTherm TPS2200, TA Instruments Fox50.

• Thermal imaging: FLIR A6703sc mid-wave IR Camera, Meiji MT6000 fluorescence microscope, Fastec IL5 high speed camera.

• Electrochemical Measurements: Kikusui PFX2512 C/D system, VersaSTAT4 Potentiostat/Galvanostat.

• Electrical measurements and data acquisition: Multiple lock-in amplifiers, function generators, power sources, picoammeters, etc.

• Custom-built thermal characterization setup for cells/packs.

• Chemical handling: LC101 glovebox and Thermo Scientific 1300 chemical fume hood.

• Vacuum chambers: KL XTEMP−BX, Instec HCS662V

• Simulation & modeling: Advanced multiphysics simulation software, 256-core Xi computer workstation.

• Detonation facilities and high-rate cell cycling facilities (through collaborators).
Acknowledgments

A. Students:

Current:
1. Vivek Vishwakarma
2. Krishna Shah
3. Dean Anthony
4. Salwa Shaik
5. Mohammad Parhizi
6. Hardik Prajapati
7. Ratnesh Raj
8. Swapnil Luhar
9. Cody McKee
10. Divya Chalise
11. Chirag Waghela
12. Nicolas Long

Alumni:
1. Prof. Leila Choobineh (Asst. Professor, SUNY Polytechnic Institute, Utica, NY)
2. Dr. Stephen Drake (R&D Manager, Thermon Inc.)
3. Dr. Daipayan Sarkar
4. Mohammad Parhizi (MS, Ph.D. student, UTA)
5. Annas Javed (MS, Sr. Product Engr., Qualcomm)
6. Bhavik Patel (MS, Design Engineer, Siemens)
7. Arya Banait (BS, Grad Student, Stanford University)
8. Mark Robinson (BS, Transportation Tech. Serv.)
9. Jared Jones (BS/MS, Abbott Labs)

B. Collaborators:
Prof. D. Wetz (EE, UTA), Prof. F. Liu (U. Mass.), Prof. D.K. Ezekoye (UT Austin), Dr. R. Prasher (LBNL), Dr. C. Daniel (ORNL), Dr. J. Ostanek, Dr. S. Miller, Dr. J. Heinzel (US Navy).

C. Funding: NSF (CAREER, CBET-TTP, CBET-EFS, ECCS-EPCN), ONR, ONR-DURIP, DoE, IUSSTF, ORAU, Microfabrica, Inventek.
Contact: jaina@uta.edu