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• Mission: To Understand and Optimize Heat Transfer in Engineering and Biological 
Materials, Processes and Systems.

• Research directions: Thermal Measurements and Modeling, Electrochemical 
Energy Conversion & Storage, Microscale Heat Transfer.

• Sponsors:

Microscale Thermophysics Laboratory at UTA
www.uta.edu/mtl
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Li-ion Cell: A Multiphysics Multiscale System
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Thermal Concerns in Li-ion Batteries
• Fundamental Heat Transfer Questions of Much Practical Relevance:

• How much heat is generated in a Li-ion cell and how?

• What is the nature of thermal conduction through the Li-ion cell?

• How does one optimize heat generation and conduction processes?

• How does one thermally interrogate the cell?

• How does one reconcile thermal and electrochemical trade-offs?
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3. Material-level thermal 
transport measurements

(Why does a cell get so hot?)

1. Non-invasive core 
temperature measurement

(Thermal x-ray)

2. Prediction of thermal runaway
(When is a battery at risk of exploding?)

4. Heat pipe based cooling
(How to passively cool a cell)
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Measurement of Internal Temperature
• Surface temperature measurement is a poor indicator of 
core temperature.  

• A non-invasive method for core temperature 
measurement is very desirable. 

• Such ‘x-ray’ capability exists for other physical 
properties such as stresses, but not for temperature.
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Non-Invasive Core Temperature Measurement
• We have shown that the core temperature of a heat-generating cylinder in 

steady state is given by

where T0(θ) is the temperature around the outside surface of the cylinder. 

• Similarly, in transient conditions, we have shown that

where

• These equations show that the core temperature can be determined using 
appropriate integrals of measured surface temperature, either in steady 
state or in transient. 
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Non-Invasive Core Temperature Measurement
• A thermal test cell similar in construction and thermal 
properties as a 26650 Li-ion cell. 

• IR camera for surface temperature measurement.

• Theoretical models from last slide used to determine Tcore
and Tcore(t) in various operating conditions.

• Embedded core thermocouple for measurement validation.
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Non-Invasive Core Temperature Measurement
• Very good agreement between this measurement method and measurement 
from embedded thermocouple.

• Able to capture temperature at steady-state and during transients.

• Good agreement for ON-OFF type of heating typical for cyclic charge/discharge.
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Anthony, et al., Int. J. Heat Mass Transfer, in review, 2017

Core Temperature Measurement in a Li-ion Cell
• 26650 Li-ion cells with embedded thermocouples were assembled .

• Internal temperature was predicted during realistic discharge processes and 
validated against embedded thermocouple measurements.
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Measurements on 26650 Li-ion Cell
• Core temperature is measured on a 26650 cell instrumented with an internal 
thermocouple, up to 10C discharge rate. 

• Good agreement between predicted temperature and internal thermocouple 
measurement over entire discharge period.

• We are working towards core temperature prediction during thermal runaway.
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Thermal Runaway Prediction
• Heat accumulation in a Li-ion cell results in thermal runaway.
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General Solution

• This shows that in order for the cell temperature to stay bounded,

• TRN is a fundamental, non-dimensional number that governs whether 
thermal runaway occurs or not.



Experimental Validation

• Experimental data confirm this theoretical 
prediction for a variety of cases. 

• Thermal runaway is seen to occur only when 
TRN>1.
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Battery Behavior in Realistic Conditions
• Electrochemical reactions in a battery follow Arrhenius kinetics.

• Experimental data show that temperature remains bounded while TRN<1, but 
thermal runaway occurs once TRN exceeds 1.

• Data indicates the possibility of pro-active prediction of  onset of runaway.
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Prediction of Safe/Unsafe Thermal Design Space

• The experimentally-validated model can predict safe and unsafe regions in the 
thermal design space.
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Measurement of Material-level Thermal Transport
• Measurements show that thermal 
conductivity of even the least 
conducting material in a Li-ion cell is 
greater than the measured cell-level 
thermal conductivity. 

• This indicates that interfacial thermal 
resistances in a Li-ion cell may be 
important. 

Vishwakarma, et al., J Power Sources, 2014
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Measurement of Material-level Thermal Transport
• Separator-cathode thermal 
contact resistance contributes 
~88% of total thermal resistance 
in a Li-ion cell.

•Measurements in good 
agreement with acoustic 
mismatch theory for interfacial 
phonon transport.

Vishwakarma, et al., J Power Sources, 2015 20



Enhanced Thermal Transport Through Interface 
Engineering

• Surface modification of 
separator/cathode resulted in 
significant reduction in separator-
cathode thermal contact resistance.

Vishwakarma, et al., J Power Sources, 2015
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Thermal Enhancement without Electrochemical 
Deterioration

• This approach significantly improves thermal performance while preserving 
electrochemical performance.

• Large-scale implementation presents additional challenges.
Vishwakarma, et al., J Power Sources, 2015
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Summary

• Thermal engineering plays a key role in ensuring safety of Li-
ion based electrochemical energy storage devices and 
systems.

• Optimization of material-level thermal transport is important 
for device-level and system-level improvements in safety and 
performance.

• Synergistic partnerships between Universities, National Labs 
and companies is critical for transformative progress.
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Facilities
• Thermal property measurement: Netzsch LFA467, Custom-built 
1D Heat Flux System, CTherm TPS2200, TA Instruments Fox50. 

• Thermal imaging: FLIR A6703sc mid-wave IR Camera, Meiji 
MT6000 fluorescence microscope, Fastec IL5 high speed camera.

• Electrochemical Measurements: Kikusui PFX2512 C/D system, 
VersaSTAT4 Potentiostat/Galvanostat. 

• Electrical measurements and data acquisition: Multiple lock-in 
amplifiers, function generators, power sources, picoammeters, etc.

• Custom-built thermal characterization setup for cells/packs.

• Chemical handling: LC101 glovebox and Thermo Scientific 1300 
chemical fume hood.

• Vacuum chambers: KL XTEMP−BX, Instec HCS662V

• Simulation & modeling: Advanced multiphysics simulation 
software, 256-core Xi computer workstation.

• Detonation facilities and high-rate cell cycling facilities (through 
collaborators).
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