#### Transitioning Electrochemical Acoustic Analysis into a Predictive Technique for Understanding Complex Behaviors

#### Daniel Steingart

Princeton University Princeton Lab for Electrochemical Engineering Systems Research Department of Mechanical and Aerospace Engineering Andlinger Center for Energy and the Environment

Meeting The Challenge ESS 2017-02-22



## Thanks in Advance

















αlpha-En

# Anna Karenina was a Battery

- "All happy families are alike; each unhappy family is unhappy in its own way"
- "If you look for perfection, you'll never be content"



"Anything is better than lies and deceit!"

# Group Hypothesis

Many Couplings Create An Unfortunate Tetrahedron



## The Hidden Metric in Ragone



More Energy @ Unlimited Rate  $\frac{\Delta E}{C_p*m} = \Delta T$  Less Mass

# State Estimation



doctor pilot @pilotbacon · 33m

i made it home from manhattan to queens with 1% on my phone the whole time and now i feel like i finally understand the story of Hanukkah



# Cost No Object Tool: EDXRD



$$d = \frac{n\lambda}{2\sin\theta}$$

|       | θ      | λ      |
|-------|--------|--------|
| EDXRD | Fixed  | Varied |
| θ-2θ  | Varied | Fixed  |

Near real time reconstruction of a full cell in operation

Requires White Beam And Serious Flux

Hope the Wiggler Stays Up

# The Allegory of The Cell

#### (You Cell Phone Estimator) (Cheap Stuff)

(Synchrotron Radiation) (Neutron Sources) (Fancy Stuff)



(Generally) Deconstructed Systems

Working Systems

http://www.jupiterjenkins.com/spelunking-with-ray-bradbury/

truth is expensive but uncalibrated estimation is dangerous

# The Allegory of The Cave

#### What Can Bridge?

For "real systems" I'd argue that the default is EIS



http://www.jupiterjenkins.com/spelunking-with-ray-bradbury/

# Why Does This Happen?



#### Bhadra et. al. JMCA 2015

#### 100 90 80 70 60 50 40 30 20 10 0

State of Charge

Why does this happen?

# A Complex Story



|            |    |       | Sepa    | arator | 2        |           |   |
|------------|----|-------|---------|--------|----------|-----------|---|
|            |    | ZnO   | jul     |        | Zn       | 3000 mA.h |   |
|            |    |       | Alli    | ف      | 4        | 2700 mA h | _ |
|            |    |       | AN      | A      |          | 2400 mA h |   |
| _          |    |       | ALL     | 1      |          | 2100 mA h |   |
| 2          |    |       | AN      | A      |          | 1800 mA h | _ |
|            |    |       | AN.     | 4      |          | 1500 mA h |   |
| Ë          | 1  | 11.00 | an      | 1      | <u> </u> | 1200 mA h |   |
| = <u> </u> |    |       | ART,    | 1      | <u> </u> | 900 mA.h  |   |
|            |    |       | a della | -      | <u> </u> | 600 mA h  | _ |
|            |    |       | int     | 1_     |          | 300 mAh   | _ |
| _          |    |       | 1       | 1      |          | 0 mAh     | _ |
|            |    |       | 112     | 0.5    |          |           |   |
| 01         | 05 | 83    |         | (1/Å)  |          | п /       | п |

|                  |     | . 1    | Current ( | Collect    | lor      |            | _   |
|------------------|-----|--------|-----------|------------|----------|------------|-----|
|                  |     | ZnO    | ite       |            | Zn       | 3000 mA.h  | _   |
| Intensity (A.U.) |     |        | ifi       | 1.         | _i       | 2700 mA.h  |     |
|                  |     |        | ifi       | 1 :        |          | 2400 mA.h. | _   |
|                  |     |        | ili       | Q i        | i        | 2100 mA.h. |     |
|                  |     | خالنه  | 1 i       |            | 1800 mAh | _          |     |
| ě.               |     |        | 1 pris    | 1 i        | ż        | 1500 mAh   | _   |
| Sea              |     | 2      | المن      | 1          | 1        | 1200 mAh.  | _   |
| E                |     | - 1975 | inf.      | Li         |          | 900 mAh _  | _   |
|                  |     |        | . M.      |            | 1        | 800 mA h   | _   |
|                  |     |        |           | 1          |          | 300 mA h   | _   |
|                  |     |        | LL.       | <u># :</u> |          | 0 mA.h     | _   |
| 0.1              | 0.2 | as     | 0.4       | cs         | ¢.e      | 0.7        | 0.8 |
|                  |     |        | 1/d ()    | 104)       |          |            |     |



Bhadra et. al. JMCA 2015

### Mechanics and Batteries



#### Acoustic emmission



Rhodes et. al. JECS 2010

#### Large-scale delamination



Fig. 2 Illustration of (a) a new cell and (b) a cell after multiple charge/discharge cycles



Sood et. al. IEEE 2013

# Is there a global connection?

- Is there a way to study the electrochemical & mechanical behavior of *all* closed batteries, regardless of chemistry and geometry?
- Can we detect the subtle changes that occur in a battery during cycling?

Thoughts about closed batteries during cycling:

- Density distribution *must* shift
- Modulus distribution will change as well

## **Basic Acoustics**

Sound speed 
$$c = \sqrt{\frac{K + \frac{4}{3}G}{\rho}}$$
 Longitudinal/Shear Modulus Density  
Acoustic  $Z = \rho \cdot c$   $\overrightarrow{P \cdot Z_1}$ 

#### Hypothesis:

Cycling will affect the behavior of sound traveling through a battery

### Simulation of pulse through a cell



#### Simulation of pulse through a cell



\*Constant SOC

# EA Simulation

### Waveform evolution as f(SOC)\*



# Visualizing EA data



snapshot in cycling time, single SOC

time-resolved, changing SOC

# EA Simulation



## More layers, more complexity



\*assuming only density changes

Hsieh et. al. E&ES 2015

# Sub Wavelength Handwave



# Experimental Setup



# LCO Prismatic





\*experimental data

Hsieh et. al. E&ES 2015

# LCO Prismatic



Hsieh et. al. E&ES 2015

Pulse Echo

Through Signal

Thickness 5mm



Hsieh et. al. E&ES 2015

Through Signal

Pulse Echo

# NCA 18650 - cycle by cycle



Hsieh et. al. E&ES 2015

# Alkaline Brand Comparison



# Chemistry/geometry specific



In Progress

# Summary

- Sound *must* be an indicator of battery structure, state of charge, and state of health due to the basics operation of a closed electrochemical energy storage
- In combination with traditional tools, we can provide direct structural information on real batteries, in real time.