Energy Storage Trends and Challenges - New Mexico’s Numerous Contributions

Steve Willard, PE
Technical Executive

New Mexico Regional Energy Storage and Grid Integration Workshop

August 23-24, 2016
Together…Shaping the Future of Electricity

EPRI’s Mission
Advancing safe, reliable, affordable, and environmentally responsible electricity for society through global collaboration, thought leadership and science & technology innovation.
Agenda

• Energy Storage Background & Vision
• Grid Integration Issues and Challenges
• Efforts addressing the Challenges
• New Mexico Initiatives that are making a difference
Background - Global Application of Storage

Electro-mechanical and Thermal have leveled off – almost all recent growth is electro-chemical (batteries)

Note: Excludes Pumped Hydro
Source: DOE ESS Storage Database
Background - Deployment of Battery Storage to Date

Investment is still relatively small but rapidly growing

- IPPs installing storage to provide ancillary services to energy markets
- Utilities are exploring options at the transmission and distribution level
- Some developers are installing systems on the customer side of the meter (currently ~10% of installed base)

Many installations are at the demonstration / pilot phase

- Benefits are understood, but monetization can be difficult
- Network based, frequency regulation/market systems are being financed

Lithium ion has become the most popular technology

![Graph showing lithium ion and lead-acid-based storage systems installed worldwide from 2008 to 2015](image)
Why is lithium ion so popular?

Lithium ion is now the lowest-cost battery technology, and prices are still declining.

Sharp drop in prices in late 2015!

2010-2020 Vehicle Lithium-Ion Battery Cost Projections

Vehicle Battery Costs ($/kWh)

Year

2010 2015 2020 2025
More on Lithium Ion Technology

Significant improvement in real performance (usable Wh/kg)

- 46% improvement in usable capacity
- Largely due to learning curve effects and more confidence in performance
- Improved cell chemistries have resulted in more energy, lower weight

![Chevrolet Volt Battery Capacity Chart]

<table>
<thead>
<tr>
<th>Year</th>
<th>Rated Capacity (kWh)</th>
<th>Usable Capacity (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>16.0</td>
<td>13.0</td>
</tr>
<tr>
<td>2013</td>
<td>16.5</td>
<td>13.5</td>
</tr>
<tr>
<td>2015</td>
<td>17.1</td>
<td>14.1</td>
</tr>
<tr>
<td>2016</td>
<td>18.4</td>
<td></td>
</tr>
</tbody>
</table>
Over 480,000 EVs on the road in the US as of July 2016
Future Development of Lithium Ion Based Batteries

Theoretical densities are just that- but any movement on a logarithmic scales is significant.
Other Storage Technologies Experiencing Headwinds

Established technologies
- Lead-acid sales have slowed for stationary market
- High-temperature sodium has seen some vendor attrition
- Flywheels have also experienced vendor attrition

Near to Mid-Term Technologies
- Flow batteries very slowly achieving scale
- Sodium Ion making progress in some markets
- Metal-air (zinc-air, lithium-air) still nascent, though a few vendors claim some deployment

Medium to Long-Term Technologies
- Hydrogen Fuel Cells have experienced huge investment, with mixed results – great progress but still tremendous challenges
- Solid-State Batteries experiencing substantial investment but no products yet

Companies without strong strategic partners may have trouble surviving
Technology Forecast

Rapidly declining costs for lithium ion batteries arising from a combination of scale production, learning curve effects, and vicious competition among players. Most players are counting on supply chain management for further cost reduction.

Lithium ion will continue to be the dominant battery technology at least for the next decade and perhaps even beyond 2030. Continuing advances in cathode technologies, high-voltage electrolytes and silicon/graphene anodes may allow for another doubling of energy density without significant changes to the fundamental chemistry or operation.

Future technologies still face major challenges though research continues and revolutionary advance is still possible. Most technologies are awaiting fundamental materials breakthroughs to address challenges; while such breakthroughs are possible and even probable, it is difficult to put a timeline to when they may occur.

Behind the meter storage growth could be robust as some forecasts point to a 30-45% (currently at 10%) market share by 2025 and the virtual power plant concept is gaining traction.
Addressing the Challenges to Storage

Aligning storage to larger grid needs, where very high renewable penetrations are envisioned, requires significant developments in controls, rates and price delivery structures, especially to accommodate customer side storage - See recent NREL report

Costs and performance factors of technology solutions must be better understood – Costs are becoming apparent but many value streams remain challenging to quantify

Tools for understanding the value and grid impacts of storage are being developed – EPRI StorageVET – web hosted, publically available this fall

Ensuring that storage technology solutions are safe, secure, reliable, affordable, and practical – Broad stakeholder engagement and interaction through EPRI’s Energy Storage Integration Council

Create best practices for deployment, integration, operations, maintenance, and disposal – Huge focus on Smart Grid interoperability (CIM, Wi-SUN FAN), SNL/PNNL Storage Test Protocols

Photo courtesy Southern Co.
Addressing the Challenges to Storage - continued

Modeling Storage – currently on a feeder by feeder basis for distribution based storage - numerous models are now capable of addressing energy based (slow) applications – power based (fast) modeling is being developed

Codes and Standards are emerging but still a slow pace – Need to foster stakeholder input to code/standard making process

Operational Data – reliability figures needed to justify future investments – database needed – similar to PVROM (EPRI/SNL collaboration)

Costs are still too high – limited B/C >1 ratios for distributed or customer based applications – costs need to be driven down for all storage components

Storage value needs clarification – benefit of resiliency/improved reliability =?
Possible Economics for 1MW+ / 4 Hour Storage System

Site Costs are becoming apparent
Enterprise controls aren’t

Some benefits are easily quantifiable, some aren’t – especially in the case of utility side distribution based storage Current costs require multiple benefit streams.

- Frequency Regulation
- Spinning/Non-spinning Reserve
- Energy Time-Shifting/Arbitrage
- Resource Adequacy (Capacity and Flexibility)
- Distribution Upgrade
- Deferral (Capacity)

Requires market signal delivery and back office platform (very expensive but typically not embedded in costs)

If no deferral apparent can reliability/resiliency substitute? Difficult to attach $ benefits to this

Control Integration—One of the Biggest Challenges

How to get storage to do what’s needed?
- Simple vs sophisticated controls
- Single application vs. multiple applications
- PCS based controls vs. back office controls vs. cloud base

How to control a lot of storage units?
- DMS DERMS – names of very robust back office platforms
- Part of Smart Grid infrastructure

How to talk to storage systems?
- IEEE 2030.2 – guidance on interoperability for storage – making many systems/pieces of equipment talk to each other
- Utility – DNP3 (SCADA protocol) – typically need to translate to:
 Storage controls – MODBUS/CANBUS
- Emerging standards – Emerging from IEEE, SGIP, CA and other efforts

Cyber security
- Vendor remote access – there may be limits to what is allowed
- Evolving standards and policies – some sites may prevent vendor access
The Back Office Controls Needed for Lots of Distributed Resources
The Future Grid – Far Away from Edison’s Pearl Street

DOE Power Systems Engineering Research Center
New Mexico Based Initiatives

- DOE/EPRI/NRECA Energy Storage Handbook
- PNM’s Prosperity Energy Storage Project
- Mesa del Sol Micro-grid – UNM/ Mitsubishi Research Institute
- EPRI/UNM Model Development
 - DER CAM - Canary Islands, Spain
 - PCS fast acting storage model
 - Applications of Machine Learning to Big Data Using Neural Networks
- EPRI/Sandia Micro-grid Collaboration
- EPRI/SNL – PVROM database
- UNM/Frauenhofer CSE - NSF CRISP (Critical Resilient Interdependent Systems and Processes)
New Mexico Based Efforts – On the Forefront of Meeting the Challenges

PCS fast acting model – showing battery interacting on voltage support

DER CAM optimization of island based PV and storage analysis

Results: Voltage Regulation + Smart Inverter Controller

The size of storage and inverter determine the extent of voltage regulation capabilities.

Matrix of optimization results – annual costs

<table>
<thead>
<tr>
<th>location</th>
<th>loc7</th>
<th>loc8</th>
<th>loc4</th>
<th>loc11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case #</td>
<td>total</td>
<td>fuel</td>
<td>C02</td>
<td>losses</td>
</tr>
<tr>
<td>0</td>
<td>10.45</td>
<td>8.13</td>
<td>3.66E+07</td>
<td>3.20</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>5.98</td>
<td>2.72E+07</td>
<td>3.10</td>
</tr>
<tr>
<td>2</td>
<td>9.10</td>
<td>5.95</td>
<td>2.70E+07</td>
<td>3.11</td>
</tr>
<tr>
<td>3</td>
<td>8.99</td>
<td>5.54</td>
<td>2.52E+07</td>
<td>3.94</td>
</tr>
<tr>
<td>4</td>
<td>8.99</td>
<td>5.55</td>
<td>2.52E+07</td>
<td>3.71</td>
</tr>
<tr>
<td>5</td>
<td>8.81</td>
<td>5.26</td>
<td>2.39E+07</td>
<td>4.93</td>
</tr>
<tr>
<td>6</td>
<td>8.81</td>
<td>5.23</td>
<td>2.38E+07</td>
<td>5.65</td>
</tr>
<tr>
<td>7</td>
<td>8.80</td>
<td>5.26</td>
<td>2.39E+07</td>
<td>6.28</td>
</tr>
<tr>
<td>8</td>
<td>8.80</td>
<td>5.26</td>
<td>2.39E+07</td>
<td>6.28</td>
</tr>
</tbody>
</table>
Together…Shaping the Future of Electricity
Additional material
Power and Energy Comparison for Storage Technologies

<table>
<thead>
<tr>
<th>Energy Storage Technology</th>
<th>Energy Density (W-hr/kg)</th>
<th>Power Density (W/kg)</th>
<th>Commercial Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Lead Acid</td>
<td>35</td>
<td>300</td>
<td>Available (Mature)</td>
</tr>
<tr>
<td>- Nickel cadmium</td>
<td>35</td>
<td>200</td>
<td>Available</td>
</tr>
<tr>
<td>- Lithium-Ion</td>
<td>75</td>
<td>180</td>
<td>Available</td>
</tr>
<tr>
<td>- Nickel Hydride</td>
<td>50</td>
<td>200</td>
<td>Available</td>
</tr>
<tr>
<td>- Sodium Chloride</td>
<td>90</td>
<td>150</td>
<td>Available</td>
</tr>
<tr>
<td>- Sodium Sulfur</td>
<td>110</td>
<td>260</td>
<td>Available</td>
</tr>
<tr>
<td>- Zinc Bromine</td>
<td>70</td>
<td>75</td>
<td>Available</td>
</tr>
<tr>
<td>- Zinc Air</td>
<td>375</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Flywheels</td>
<td>10-100</td>
<td>1,000-10,000</td>
<td>Available</td>
</tr>
<tr>
<td>Pumped Hydro</td>
<td>---</td>
<td>---</td>
<td>Available</td>
</tr>
<tr>
<td>CAES</td>
<td>---</td>
<td>---</td>
<td>Available</td>
</tr>
</tbody>
</table>