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With the increase in grid-tied utility-scale solar PV energy production, there is a growing concern for dis-
tributed power variability due to high-frequency intermittency caused by clouds and other atmospheric ob-
structions. Using battery energy storage, power can be “smoothed” before being dispatched to the grid by
calculating the smoothed profile of the raw power, then charging or discharging storage to achieve all or part
of this difference in profile. There are many algorithms for calculating the smoothed profile, each providing
varying smoothing quality in terms of ramp rate reduction and battery stress which shortens the lifespan
causing increased system O&M costs. In this analysis, modeled system behaviors using three smoothing al-
gorithms, including one which simulates a short-term power forecast, are compared for battery stress under
equivalent ramp rate reduction performance. Results show that battery stress is most significantly reduced
when using a centered moving average algorithm which utilizes the short-term prediction.

Keywords: optimization, PV, smoothing, battery storage

INTRODUCTION

Grid-tied utility-scale solar photovoltaic (PV)
distributed energy production is becoming more
prevalent thanks to increasing affordability and
improved performance of equipment. While this
provides many benefits regarding sustainability
and future grid structure, it creates new chal-
lenges for power quality regulation. PV power
can change nearly instantaneously due to passing
scattered clouds and other atmospheric obstruc-
tions. Large fluctuations in grid power can disrupt
distribution by causing flicker and overall incon-
sistent power which can lead to penalties against
utility companies. Currently, changes in power
are typically mitigated with the use of load tap
changer (LTC) operations which keep an accept-
able range of voltage. However, the increase in
distributed PV power generation introduces more
instances where an LTC operation is required, thus
inflicting more wear on the equipment and possi-
bly increasing O&M and equipment replacement
costs.

High-frequency intermittency can also be ad-
dressed on-site with generation through smoothing
which involves using fast-response energy storage
to dampen severe power ramps before electricity
is dispatched onto the grid [1]]. This is done by
calculating the smoothed profile of the raw PV

power, then charging or discharging storage ap-
propriately to achieve all or part of this difference
in profile. There are many algorithms for cal-
culating this smoothed profile and they provide
varying quality of smoothing in terms of ramp
rate (change in power) reduction, stress on en-
ergy storage, and system requirements for making
the calculation. In the case of a battery energy
storage system (BESS), increased stress shortens
the lifespan leading to increased system O&M
and replacement costs. The goal of this analysis
is to determine which of three different smooth-
ing algorithms inflicts minimal BESS stress while
providing equivalent smoothing performance, thus
optimizing the batteries’ longevity. Knowing this,
one can tailor algorithm operation parameters to
provide the desired reduction of ramp rates.

This analysis was performed using, in part, his-
torical power data (before and after smoothing)
from the Prosperity Energy Storage Project near
Mesa del Sol in Albuquerque, New Mexico shown
in figure E] [2]. This DOE/ARRA funded SMART
Grid Storage Project is investigating large-scale
grid-tied PV energy production with utility-scale
battery storage capable of simultaneous load shift-
ing and smoothing [3]. The pre-smoothing (raw)
power data were used to numerically model the
theoretical power output which was then calibrated
to the Prosperity’s historical post-smoothing pri-



mary meter (PM) power data.

Figure 1: Prosperity Energy Storage Project near Mesa
del Sol in Albuquerque, New Mexico which
has 500kW PV capacity with BESS capable
of simultaneous shifting and smoothing.

The numerical model used for this analy-
sis was produced by modifying a model used
by Sandia National Laboratories for an unrelated
study [4]. The modifications included introducing
a third algorithm which simulates a perfect short-
term solar power forecast. Running each algorithm
for the project’s one-second temporal resolution
PV power data, theoretical ramp rate distributions
and BESS usage characteristics are compared side
by side for algorithms using a low pass filter, lag-
ging moving average, or centered moving average
(simulating a short-term solar forecast). Prior to
algorithm comparison, parameters such as dead-
band and system response delays are calibrated to
adequately reproduce historical output data from
the Prosperity Site for days using either lagging
moving average or low pass filter real-time.

THEORY

Algorithms

The first step to apply PV power smooth-
ing is to determine a goal output power value
which closely follows solar resource while remov-
ing high-frequency intermittency. The difference
between the smooth profile and raw power are
then mitigated by the BESS to achieve the desired
output. The smooth profile is calculated based
on a span of real-time raw PV power data. Two
common algorithms for calculating this smooth-
ing profile are a moving average (MA) and low
pass filter (LPF). A moving average is the mean

of all data within a user-determined time window
(tw) either immediately before (lagging) or around
(centered) the current time stamp. A LPF is a
means of removing variability at frequencies be-
low the cut-off frequency represented by the time
constant (tc). Example smoothed profiles resulting
from the lagging MA, centered MA and LPF based
on real data are shown in figure 2]
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Figure 2: Model smoothed power profiles by which
battery operation is determined; note charac-
teristics in different algorithms.

The lagging MA has the advantage of utilizing
only known past data but exhibits a delay in pro-
file causing larger differences in raw and desired
power. The LPF offers a seemingly flatter pro-
file but also creates some considerable differences
which the battery storage would need to mitigate.
A centered MA yields a profile which best follows
the real-time power, however this method requires
knowledge of future power obtained from a short-
term forecast. In this study actual data is used
to simulate a forecast even though a real forecast
would have a degree of error. Regardless, this pro-
vides a means to evaluate the potential for short-
term forecasting to reduce battery stress.

Applied Smoothing

In real world application smoothing is imper-
fect causing the net output to maintain some vari-
ability greater than that of the smooth profile. This
can be due to unintentional factors such as control
system or battery response delays which can mag-
nify power ramps if there is a sudden ramp in the
opposite direction from the previous time stamp.



Net output can also deviate unintentionally due to
load at the power station as required by heating or
cooling causing ramps outside of the algorithm’s
visibility. Lastly, unforeseen ramps can be intro-
duced after applied smoothing when the power,
which is smoothed at residential/commercial volt-
age (e.g. 480 V), is passed through the step-up
transformer to transmission voltage levels (e.g.
12.47 kV). This effect was experienced during this
analysis and addressed by utilizing data only from
meters on the low side of the transformer.

Deviation can also be user controlled in an
attempt to prevent unnecessary battery use while
maintaining desired smoothing quality. A dead-
band is a ramp rate value below which smoothing
will not be applied because the ramp is deemed not
significant enough to justify mitigation. For the
Prosperity Site a 20 kW deadband is utilized and
thus used for the algorithms tested here. Likewise,
though algorithms tested in this study attempt to
smooth 100% of power ramps, smoothing can be
applied to mitigate a percentage of ramps as long
as output is satisfactory. Perhaps the simplest way
to control smoothing quality is to adjust the MA’s
time window or LPF’s time constant. Increasing
these values produce a flatter goal power profile
but also increases BESS use. These factors in ap-
plied smoothing yield a smoothed output power as
shown in figure 3] for the profiles shown previously
in figure 2]
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Figure 3: Model smoothed power with applied smooth-
ing characteristics caused by system delays
and smoothing deadband.

Though there are many factors affecting

smoothing quality, the goal in this study was to
establish equality among the algorithms which is
shown by ramp rate distribution, mean ramp rates,
and 99th percentile ramp rates. All ramp rates
were calculated using an absolute value two-point
backwards difference. This allows comparison to
be made with regards to battery stress which is rep-
resented by the running total of displaced energy
and frequency response figures. The end-of-day
total displaced energy values for each algorithm
are then compared to quantify usage.

RESULTS

Ramp Rate Reduction

Matching the model’s user-defined parameters
to those used at the Prosperity Site, sufficiently
equivalent smoothing quality was exhibited among
the three algorithms. The ramp rate distribution
in figure [ shows the three algorithms to be visu-
ally identical and this behavior was found to be
consistent for all data sets evaluated. The distribu-
tion shown is zoomed to a window which removes
lower ramps in order to increase high-magnitude
ramp visibility though distributions overlapped at
lower ramps as well.
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Figure 4: Distribution of ramp rates for historical and
algorithm power signals; looking for equiva-
lent performance among algorithms.

Note that historical smoothed power data ex-
perienced worse ramps after smoothing. This is
attributed to noise introduced by the step-up trans-
former as mentioned in the theory section. The
mean ramp rate for each data set shown in this fig-
ure is shown in table[T]



Table 1: Mean ramp rates for net outputs modeled using
1/3/12 data set; note roughly equivalent values
among algorithms.

Algorithm Mean Ramp Rate (W/s)
Lagging MA 508.62
Cenetered MA 513.29
LPF 508.20

Among the algorithms, the mean ramp rates
are sufficiently close to each other to establish
equality. However, the centered MA would sug-
gest a slightly higher quantity of maximum ramp
rates. To quantify this higher-magnitude ramp
rate probability, the 99th percentile ramp rates are
shown in table 2] Again the algorithms’ values
show roughly equivalent smoothing quality.

Table 2: 99th percentile ramp rates for net outputs mod-
eled using 1/3/12 data set; note roughly equiv-
alent values among algorithms; equality con-
sistent for all data sets.

Algorithm Ramp Rate (kW/s)
Lagging MA 4.00
Cenetered MA 4.04
LPF 4.00

BESS Stress: Energy Displacement

With equivalent smoothing quality established,
the algorithms can be compared based on battery
stress. This is first presented by a running sum
of energy displaced (charged or discharged) by the
BESS to smooth the historic raw PV power sig-
nal from three different data sets. These days had
varying degrees of intermittency as shown by the
maximum and mean raw PV ramp rates listed in
table 3l

Table 3: Maximum and mean raw PV power ramp rates
for time periods used for analysis.

Max Ramp | Mean Ramp
Date (M/ID/Y) | pte (kWis) | Rate (kW/s)
1312 10.19 0.50
211/13 47.28 275
12/18/12 87.10 122

The first of these data sets (1/3/12) experienced
the lowest magnitude maximum ramp and least
sustained variability as seen from the mean ramp
rate. It also showed the greatest contrast in perfor-
mance among the algorithms with respect to en-
ergy displaced as shown in figure 3

Smoothing Battery Energy Displaced
120,

100~

[}
o

N
o

Battery Energy (kWh)
(2]
o

20 —Lag MA
—Cent MA
‘ —LPF
G0 0.5 1 1.5 2
Time (s) x 10°

Figure 5: Running sum energy dispatched by BESS as
result of smoothing for a moderately intermit-
tent time period (1/3/12).

The next data set (2/11/13) experienced a mid-
range maximum ramp rate but significantly more
sustained variability. In figure [f] note the reduced
advantage of any algorithm over another. The
centered MA still exhibits better performance but
it’s margin is greatly reduced due to the sustained
higher-magnitude variability. Despite the reduc-
tion, the advantage is still significant and could
translate into long-term reduced BESS wear and
O&M costs.
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Figure 6: Running sum energy dispatched by BESS as
result of smoothing for a highly intermittent
time period; note reduced advantage of any
algorithm over another (2/11/13).

The final data set (12/18/12) experienced the



highest magnitude maximum ramp rate but lacked
the sustained variability experienced during the
2/11/13 data set. However, it’s energy displace-
ment curves reinforce the results shown in figure[3]
showing a slight advantage of lagging MA over
LPF. This behavior is repeated in figure [/| and,
again, the centered MA performs best overall.
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Figure 7: Running sum energy dispatched by BESS as
result of smoothing for a highly intermittent
time period (12/18/12).

Visually, these three data sets provide impres-
sions for each algorithms behavior. To aid in draw-
ing conclusions, the end total displaced energy by
the BESS using each algorithm and the percentage
with respect to the worst performing algorithm are
also displayed. First consider table ] which shows
the totals for the 1/3/12 data set.

Table 4: BESS energy displaced and percent of worst
case for each algorithm during 1/3/12 data set;
worst case shows 100%.

be more common for either higher-capacity PV
arrays which have a larger footprint or dispersed
smaller arrays because they would experience ge-
ographic smoothing [5} 16]. Either case would lead
to larger BESS stress savings which would better
justify increased investment costs for forecasting
equipment and technology.

The numerical results for the 2/11/13 data set
reveal an outcome not apparent in figure [6| The
total displaced energy was largest for the lagging
MA closely followed by the LPF. This 0.8% dif-
ference may be interpreted as negligible, thus re-
sulting in equivalent performance, but testing of
new data sets may reveal this outcome to be sig-
nificant. The centered MA, though not as advanta-
geous as before, provides a 14% energy displace-
ment reduction.

Table 5: BESS energy displaced and percent of worst
case for each algorithm during 2/11/13 data
set; worst case shows 100%.

. Disp. Energy | Percent of
Algorithm (kWh) Worst Case
Lagging MA 142.2 100
Cenetered MA | 1224 86.1
LPF 141.0 99.2

The final data set (12/18/12) further demon-
strates dependency on mean ramp rate as shown
in table [6l The LPF inflicted the most stress on
the battery while the lagging and centered MAs
followed at percentages slightly higher than in ta-
ble @] Based on these three data sets’ totals, there
is a definite dependancy on mean ramp rate as op-
posed to maximum ramp rate.

Table 6: BESS energy displaced and percent of worst

. Disp. Energy | Percent of
Algorithm (kWh) Worst Case
Lagging MA 89.75 83.51
Cenetered MA | 43.14 40.13
LPF 107.48 100

As with figure [5} the numerical results for

case for each algorithm during 12/18/12 data

set; worst case shows 100%.

. Disp. Energy | Percent of
Algorithm (kWh) Worst Case
Lagging MA 312.5 88.2
Cenetered MA | 245.6 69.4
LPF 3543 100

1/3/12 show the potential for the centered MA
which displaced 40% of the energy that the worst
case did. Even though the centered MA'’s percent-
age increases with increased intermittency, this
outcome is still noteworthy. This sort of intermit-
tency may be the most common in particular cli-
mates. Low to moderate intermittency would also

BESS Stress: Frequency Response

Total energy displacement provides insight
into charge/discharge cycles experienced by the
BESS, but stress is also caused by rate of change



and frequency of power flow in and out of the bat-
teries. The frequency response plots of ramp rates
are useful to visualize smoothing quality, but it
can also used here to show BESS activity. Fig-
ure [§] shows the frequency response of the historic
battery activity data and battery activity resulting
from the three algorithms for the 1/3/12 data set.
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Figure 8: Frequency response of historic and model
battery activity as a result of smoothing.

The figures exhibit similar magnitude to histor-
ical data. The lagging MA, particularly, correlates
well which is to be expected because the histori-
cal data set from 1/3/12 utilized the lagging MA
smoothing algorithm. Deviation exists at higher
frequencies which can be attributed to the noise
introduced by system delays and the step-up trans-
former.

Comparing the three algorithms, the frequency
response suggests reduced high-frequency activity
for the centered MA. This is represented in the far
right area of the frequency response curve which
lands at a magnitude of 10~% kW for the centered
MA whereas the lagging MA and LPF land at or
around 1075 kW.

CONCLUSIONS

Current results suggest that a centered mov-
ing average algorithm utilizing a short-term solar
forecast provides an advantage over a conven-
tional lagging moving average or low-pass filter
due to significantly reduced stress on the batter-

ies for roughly equivalent reduction in ramp rates.
Though the simulated forecast used actual data
which would correlate to a perfect forecast, the
results still show the potential for PV power fore-
casts to optimize the benefits of PV power pro-
duction with battery energy storage. Modern solar
forecasting methods, however, are still under de-
velopment and require added system investments
such as ground imagery equipment and calibra-
tion.

Between conventional methods, some results
show lagging moving average to be slightly less
battery-intensive for, again, comparable smooth-
ing quality. This apparently superior performance
may be dependent on the type of intermittency as
is evident in figure[5|where the lagging moving av-
erage and low pass filter curves cross over at one
point. Moreover, the advantage of any algorithm
over another is highly dependant on the degree of
variability experienced. This is apparent by the
curves’ positions relative to each from figure [5] to

figure[d]

FUTURE WORK

Currently there are many ways in which this
work could be improved to provide higher value
conclusions. For example, results show signifi-
cantly better performance in terms of battery stress
when using a short-term power forecast. However,
these results were obtained using actual data which
correlate to a perfect forecast. For a more plausi-
ble performance comparison, this analysis could
incorporate error into the forecasted power data to
then be used in the centered MA. Alternatively, an
actual short-term forecast could be implemented
if resources are available. Methods for short-term
power forecasting currently in development are
showing promise to provide useful results [7]].

Another means of improvement could be rep-
resenting smoothing quality in terms of number
of utility ramp rate violations. Presently, there is
no formally stated ramp rate magnitude warrant-
ing legal or financial repercussions in the conti-
nental United States though increased distribution
of PV power generation will likely prompt one in
the future. For the purposes of this study the re-
quirements could be adopted as published by the
Puerto Rico Electric Power Authority (PREPA)
which limits ramps to 10% of plant capacity per
minute [3]. This is lower frequency than the pri-



mary concern of this analysis but may provide a
real-world metric by which the algorithm can be
measured. Lastly, smoothing quality can be evalu-
ated by number of LTC operations due to net out-
put ramp rates. This is useful because it represents
a real concern for increased wear on utility equip-
ment leading to added O&M costs.
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