Results 1–25 of 9,998
Skip to search filters

(SAI) stalled, active and idle: Characterizing power and performance of large-scale dragonfly networks

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Groves, Taylor G.; Grant, Ryan E.; Hemmert, Karl S.; Hammond, Simon D.; Levenhagen, Michael J.; Arnold, Dorian C.

Exascale networks are expected to comprise a significant part of the total monetary cost and 10-20% of the power budget allocated to exascale systems. Yet, our understanding of current and emerging workloads on these networks is limited. Left ignored, this knowledge gap likely will translate into missed opportunities for (1) improved application performance and (2) decreased power and monetary costs in next generation systems. This work targets a detailed understanding and analysis of the performance and utilization of the dragonfly network topology. Using the Structural Simulation Toolkit (SST) and a range of relevant workloads on a dragonfly topology of 110,592 nodes, we examine network design tradeoffs amongst execution time, power, bandwidth, and the number of global links. Our simulations report stalled, active and idle time on a per-port level of the fabric, in order to provide a detailed picture of future networks. The results of this work show potential savings of 3-10% of the exascale power budget and provide valuable insights to researchers looking for new opportunities to improve performance and increase power efficiency of next generation HPC systems.

More Details

Quantification of Uncertainty in Extreme Scale Computations

Debusschere, Bert D.; Jakeman, John D.; Chowdhary, Kamaljit S.; Safta, Cosmin S.; Sargsyan, Khachik S.; Rai, P.R.; Ghanem, R.G.; Knio, O.K.; La Maitre, O.L.; Winokur, J.W.; Li, G.L.; Ghattas, O.G.; Moser, R.M.; Simmons, C.S.; Alexanderian, A.A.; Gattiker, J.G.; Higdon, D.H.; Lawrence, E.L.; Bhat, S.B.; Marzouk, Y.M.; Bigoni, D.B.; Cui, T.C.; Parno, M.P.

Abstract not provided.

The Ground Truth Program: Simulations as Test Beds for Social Science Research Methods.

Computational and Mathematical Organization Theory

Naugle, Asmeret B.; Russell, Adam R.; Lakkaraju, Kiran L.; Swiler, Laura P.; Verzi, Stephen J.; Romero, Vicente J.

Social systems are uniquely complex and difficult to study, but understanding them is vital to solving the world’s problems. The Ground Truth program developed a new way of testing the research methods that attempt to understand and leverage the Human Domain and its associated complexities. The program developed simulations of social systems as virtual world test beds. Not only were these simulations able to produce data on future states of the system under various circumstances and scenarios, but their causal ground truth was also explicitly known. Research teams studied these virtual worlds, facilitating deep validation of causal inference, prediction, and prescription methods. The Ground Truth program model provides a way to test and validate research methods to an extent previously impossible, and to study the intricacies and interactions of different components of research.

More Details
Results 1–25 of 9,998
Results 1–25 of 9,998