6 Results
Skip to search filters

Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

Nature Communications

Blume-Kohout, Robin J.; Gamble, John K.; Nielsen, Erik N.; Rudinger, Kenneth M.; Mizrahi, Jonathan; Fortier, Kevin M.; Maunz, Peter

Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if - and only if - the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Here we use gate set tomography to completely characterize operations on a trapped-Yb+-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10-4).

More Details

Micro-fabricated ion traps for Quantum Information Processing; Highlights and lessons learned

Maunz, Peter L.; Blume-Kohout, Robin J.; Blain, Matthew G.; Benito, Francisco B.; Berry, Christopher W.; Clark, Craig R.; Clark, Susan M.; Colombo, Anthony P.; Dagel, Amber L.; Fortier, Kevin M.; Haltli, Raymond A.; Heller, Edwin J.; Lobser, Daniel L.; Mizrahi, Jonathan M.; Nielsen, Erik N.; Resnick, Paul J.; Rembetski, John F.; Rudinger, Kenneth M.; Scrymgeour, David S.; Sterk, Jonathan D.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Stick, Daniel L.

Abstract not provided.

6 Results
6 Results