Results 1–25 of 53
Skip to search filters

Robustness and Validation of Model and Digital Twins Deployment

Volkova, Svitana V.; Stracuzzi, David J.; Shafer, Jenifer S.; Ray, Jaideep R.; Pullum, Laura P.

For digital twins (DTs) to become a central fixture in mission critical systems, a better understanding is required of potential modes of failure, quantification of uncertainty, and the ability to explain a model’s behavior. These aspects are particularly important as the performance of a digital twin will evolve during model development and deployment for real-world operations.

More Details

Rigorous Data Fusion for Computationally Expensive Simulations

Winovich, Nickolas W.; Rushdi, Ahmad R.; Phipps, Eric T.; Ray, Jaideep R.; Lin, Guang L.; Ebeida, Mohamed S.

This manuscript comprises the final report for the 1-year, FY19 LDRD project "Rigorous Data Fusion for Computationally Expensive Simulations," wherein an alternative approach to Bayesian calibration was developed based a new sampling technique called VoroSpokes. Vorospokes is a novel quadrature and sampling framework defined with respect to Voronoi tessellations of bounded domains in R d developed within this project. In this work, we first establish local quadrature and sampling results on convex polytopes using randomly directed rays, or spokes, to approximate the quantities of interest for a specified target function. A theoretical justification for both procedures is provided along with empirical results demonstrating the unbiased convergence in the resulting estimates/samples. The local quadrature and sampling procedures are then extended to global procedures defined on more general domains by applying the local results to the cells of a Voronoi tessellation covering the domain in consideration. We then demonstrate how the proposed global sampling procedure can be used to define a natural framework for adaptively constructing Voronoi Piecewise Surrogate (VPS) approximations based on local error estimates. Finally, we show that the adaptive VPS procedure can be used to form a surrogate model approximation to a specified, potentially unnormalized, density function, and that the global sampling procedure can be used to efficiently draw independent samples from the surrogate density in parallel. The performance of the resulting VoroSpokes sampling framework is assessed on a collection of Bayesian inference problems and is shown to provide highly accurate posterior predictions which align with the results obtained using traditional methods such as Gibbs sampling and random-walk Markov Chain Monte Carlo (MCMC). Importantly, the proposed framework provides a foundation for performing Bayesian inference tasks which is entirely independent from the theory of Markov chains.

More Details

Estimation of inflow uncertainties in laminar hypersonic double-cone experiments

AIAA Scitech Forum

Ray, Jaideep R.; Kieweg, Sarah K.; Dinzl, Derek J.; Carnes, Brian C.; Weirs, Vincent G.; Freno, Brian A.; Howard, Micah A.; Smith, Thomas M.

We propose herein a probabilistic framework for assessing the consistency of an experimental dataset, i.e., whether the stated experimental conditions are consistent with the measurements provided. In case the dataset is inconsistent, our framework allows one to hypothesize and test sources of inconsistencies. This is crucial in model validation efforts. The framework relies on Bayesian inference to estimate experimental settings deemed uncertain, from measurements deemed accurate. The quality of the inferred variables is gauged by its ability to reproduce held-out experimental measurements. We test the correctness of the framework on three double-cone experiments conducted in the CUBRC Inc.'s LENS-I shock tunnel, which have also been numerically simulated successfully. Thereafter, we use the framework to investigate two double-cone experiments (executed in the LENS-XX shock tunnel) which have encountered difficulties when used in model validation exercises. We detect an inconsistency with one of the LENS-XX experiments. In addition, we hypothesize two causes for our inability to simulate LEXS-XX experiments accurately and test them using our framework. We find that there is no single cause that explains all the discrepancies between model predictions and experimental data, but different causes explain different discrepancies, to larger or smaller extent. We end by proposing that uncertainty quantification methods be used more widely to understand experiments and characterize facilities, and we cite three different methods to do so, the third of which we present in this paper.

More Details

Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

Journal of Applied Geophysics

Ren, Huiying; Ray, Jaideep R.; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura P.

In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

More Details

SAChES: Scalable Adaptive Chain-Ensemble Sampling

Swiler, Laura P.; Ray, Jaideep R.; Swiler, Laura P.; Ebeida, Mohamed S.; Huang, Maoyi H.; Hou, Zhangshuan H.; Bao, Jie B.; Ren, huiying R.

We present the development of a parallel Markov Chain Monte Carlo (MCMC) method called SAChES, Scalable Adaptive Chain-Ensemble Sampling. This capability is targed to Bayesian calibration of com- putationally expensive simulation models. SAChES involves a hybrid of two methods: Differential Evo- lution Monte Carlo followed by Adaptive Metropolis. Both methods involve parallel chains. Differential evolution allows one to explore high-dimensional parameter spaces using loosely coupled (i.e., largely asynchronous) chains. Loose coupling allows the use of large chain ensembles, with far more chains than the number of parameters to explore. This reduces per-chain sampling burden, enables high-dimensional inversions and the use of computationally expensive forward models. The large number of chains can also ameliorate the impact of silent-errors, which may affect only a few chains. The chain ensemble can also be sampled to provide an initial condition when an aberrant chain is re-spawned. Adaptive Metropolis takes the best points from the differential evolution and efficiently hones in on the poste- rior density. The multitude of chains in SAChES is leveraged to (1) enable efficient exploration of the parameter space; and (2) ensure robustness to silent errors which may be unavoidable in extreme-scale computational platforms of the future. This report outlines SAChES, describes four papers that are the result of the project, and discusses some additional results.

More Details

Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

Computer Methods in Applied Mechanics and Engineering

Carlberg, Kevin T.; Ray, Jaideep R.; van Bloemen Waanders, Bart G.

Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of a system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation.We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equations at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. The goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.

More Details
Results 1–25 of 53
Results 1–25 of 53