Publications

Results 51–75 of 129
Date Inputs. Currently set to enter a start and end date.
Current Filters Clear all
  • Remove author filter×
Publication Type Year

Robust training and initialization of deep neural networks: an adaptive basis viewpoint

2020 Siam-caims An20

Mamikon Gulian, Eric Christopher Cyr, Ravi Ghanshyam Patel, Mauro Perego, Nathaniel Albert Trask

https://www.osti.gov/search/identifier:1808257

Conference Paper – 2020 Conference Paper 2020

Physics-informed graph neural nets A unification of NN architectures with mimetic PDE discretization

SIAM Annual meeting (virtual)

Nathaniel Albert Trask

https://www.osti.gov/search/identifier:1808025

Conference Paper – 2020 Conference Paper 2020

Physics-Informed Graph Neural Network for Circuit Compact Model Development

Sispad 2020

Xujiao Gao, Andy Huang, Nathaniel Albert Trask, Shahed Reza

Abstract – 2020 Abstract 2020

Physics-informed graph neural nets (pigNNS) A unification of NN architectures with mimetic PDE discretization

Tufts data science webinar

Nathaniel Albert Trask

https://www.osti.gov/search/identifier:1798063

Presentation (non-conference) – 2020 Presentation (non-conference) 2020

A block coordinate descent optimizer for classification problems exploiting convexity

Arxiv

Ravi Ghanshyam Patel, Nathaniel Albert Trask, Mamikon Gulian, Eric Christopher Cyr

https://www.osti.gov/search/identifier:1834091

Journal Article – 2020 Journal Article 2020

A physics-informed operator regression framework for extracting data-driven continuum models

Arxiv

Ravi Ghanshyam Patel, Nathaniel Albert Trask, Mitchell Wood, Eric Christopher Cyr

https://www.osti.gov/search/identifier:1725869

Journal Article – 2020 Journal Article 2020

Data-driven learning of robust nonlocal physics from high-fidelity synthetic data

Arxiv

Huaiqian You, Yue Yu, Nathaniel Albert Trask, Mamikon Gulian, Marta D'Elia

https://www.osti.gov/search/identifier:1765754

Journal Article – 2020 Journal Article 2020

A unified, higher-order meshfree framework for peridynamic correspondence modeling. Part I: development of a stable formulation in the strong form

Arxiv

Masoud Behzadinasab, Yuri Bazilevs, Nathaniel Albert Trask

https://www.osti.gov/search/identifier:1668361

Journal Article – 2020 Journal Article 2020

Interface Flux Recovery Coupling Method for the Ocean-Atmosphere System

Results in Applied Mathematics

Kenneth Chadwick Sockwell, Kara J. Peterson, Paul Allen Kuberry, Pavel B. Bochev, Nathaniel Albert Trask

https://www.osti.gov/search/identifier:1619234

Journal Article – 2020 Journal Article 2020

GMLS-Nets: A machine learning framework for unstructured data

2020 AAAI SPRING SYMPOSIUM (Virtual meeting)

Nathaniel Albert Trask, Ravi Ghanshyam Patel, Ben Gross, Paul Atzberger

https://www.osti.gov/search/identifier:1773276

Conference Paper – 2020 Conference Paper 2020

Compatible meshfree discretization

UIUC Engineering Colloquium

Nathaniel Albert Trask

https://www.osti.gov/search/identifier:1773275

Presentation (non-conference) – 2020 Presentation (non-conference) 2020

Physics-Informed, Multi-Stage Machine Learning for Circuit Compact Models

SIAM Conference on Mathematics of Data Science (MDS20)

Andy Huang, Nathaniel Albert Trask, Xujiao Gao, Shahed Reza

Abstract – 2020 Abstract 2020

Field reconstruction from Raviart-Thomas, Nedelec, and finite volume degrees-of-freedom using Generalized Moving Least Squares

Joint Mathematics Meeting

Paul Allen Kuberry, Mauro Perego, Nathaniel Albert Trask, Pavel B. Bochev

https://www.osti.gov/search/identifier:1761038

Conference Paper – 2020 Conference Paper 2020

Asymptotically compatible reproducing kernel collocation and meshfree integration for the peridynamic Navier equation

Computer methods in applied mechanics and engineering

Yu Leng, Xiaochuan Tian, Nathaniel Albert Trask, John Foster

https://www.osti.gov/search/identifier:1670723

Journal Article – 2020 Journal Article 2020

Improved Neural Network Training: Layer-Parallelism, Least-squares and Initialization

International Workshop On Scientific Machine Learning

Eric Christopher Cyr, Mamikon Gulian, Ravi Ghanshyam Patel, Mauro Perego, Nathaniel Albert Trask, Denis Ridzal, Stefanie Guenther (LLNL), Lars Ruthotto (Emory), Jacob B. Schroder (UNM), Nico R. Gauger (TU Kaiserslautern)

https://www.osti.gov/search/identifier:1643364

Conference Paper – 2019 Conference Paper 2019

GMLS-Nets: Scientific Machine Learning Methods for Unstructured Data

Neural Information Processing Systems

Nathaniel Albert Trask, Ravi Ghanshyam Patel, Ben Gross, Paul Atzberger

https://www.osti.gov/search/identifier:1643425

Conference Paper – 2019 Conference Paper 2019

Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint

Mathematical and Scientific Machine Learning Conference

Eric Christopher Cyr, Mamikon Gulian, Ravi Ghanshyam Patel, Mauro Perego, Nathaniel Albert Trask

https://www.osti.gov/search/identifier:1643463

Conference Paper – 2019 Conference Paper 2019

Improved Neural Network Training: Layer-Parallelism, Least-squares and Initialization

International Workshop on Scientific Machine Learning

Eric Christopher Cyr, Mamikon Gulian, Ravi Ghanshyam Patel, Mauro Perego, Nathaniel Albert Trask, Stefanie (LLNL) Guenther, Lars (Emory University) Ruthotto, Jacob B Schroder, (UNM), Nico R. (TU Kaiserslautern) Gauger

Abstract – 2019 Abstract 2019

Compatible meshfree discretization

Tufts applied math seminar

Nathaniel Albert Trask

https://www.osti.gov/search/identifier:1646410

Presentation (non-conference) – 2019 Presentation (non-conference) 2019

Physics informed machine learning at SNL

LANL seminar

Nathaniel Albert Trask, Andy Huang

https://www.osti.gov/search/identifier:1646432

Presentation (non-conference) – 2019 Presentation (non-conference) 2019

Bulk-Interface-Flux-Recovery (Bulk-IFR) Method for Coupling the Atmosphere-Ocean Interface

Conference on Computational Mathematics and Applications

Kenneth Chadwick Sockwell, Paul Allen Kuberry, Pavel B. Bochev, Nathaniel Albert Trask, Kara J. Peterson

https://www.osti.gov/search/identifier:1642998

Conference Paper – 2019 Conference Paper 2019

Spatially compatible meshfree discretization through GMLS and graph theory

Lehigh Math Department Seminar

Nathaniel Albert Trask

https://www.osti.gov/search/identifier:1675161

Presentation (non-conference) – 2019 Presentation (non-conference) 2019

Stochastic Discontinuous Galerkin Methods based on fluctuation-dissipation balance

Results in applied mathematics

Will Pazner, Nathaniel Albert Trask, Paul Atzberger

https://www.osti.gov/search/identifier:1574443

Journal Article – 2019 Journal Article 2019

A spatially adaptive high-order meshless method for fluid-structure interactions

Cmame

Wei Hu, Nathaniel Albert Trask, Xiaozhe Hu, Wenxiao Pan

https://www.osti.gov/search/identifier:1570255

Journal Article – 2019 Journal Article 2019

Compatible Particle Discretizations. Final LDRD Report

Pavel B. Bochev, Peter Andrew Bosler, Paul Allen Kuberry, Mauro Perego, Kara J. Peterson, Nathaniel Albert Trask

https://www.osti.gov/search/identifier:1569143

SAND Report – 2019 SAND Report 2019
Document Title Type Year
Results 51–75 of 129