Simulating molecules and atomic systems at quantum accuracy is a grand challenge for science in the 21st century. Quantum-accurate simulations would enable the design of new medicines and the discovery of new materials. The defining problem in this challenge is that quantum calculations on large molecules, like proteins or DNA, are fundamentally impossible with current algorithms. In this work, we explore a range of different methods that aim to make large, quantum-accurate simulations possible. We show that using advanced classical models, we can accurately simulate ion channels, an important biomolecular system. We show how advanced classical models can be implemented in an exascale-ready software package. Lastly, we show how machine learning can learn the laws of quantum mechanics from data and enable quantum electronic structure calculations on thousands of atoms, a feat that is impossible for current algorithms. Altogether, this work shows that combining advances in physics models, computing, and machine learning, we are moving closer to the reality of accurately simulating our molecular world.
A new empirical potential for efficient, large scale molecular dynamics simulation of water is presented. The HIPPO (Hydrogen-like Intermolecular Polarizable POtential) force field is based upon the model electron density of a hydrogen-like atom. This framework is used to derive and parametrize individual terms describing charge penetration damped permanent electrostatics, damped polarization, charge transfer, anisotropic Pauli repulsion, and damped dispersion interactions. Initial parameter values were fit to Symmetry Adapted Perturbation Theory (SAPT) energy components for ten water dimer configurations, as well as the radial and angular dependence of the canonical dimer. The SAPT-based parameters were then systematically refined to extend the treatment to water bulk phases. The final HIPPO water model provides a balanced representation of a wide variety of properties of gas phase clusters, liquid water, and ice polymorphs, across a range of temperatures and pressures. This water potential yields a rationalization of water structure, dynamics, and thermodynamics explicitly correlated with an ab initio energy decomposition, while providing a level of accuracy comparable or superior to previous polarizable atomic multipole force fields. The HIPPO water model serves as a cornerstone around which similarly detailed physics-based models can be developed for additional molecular species.
Potassium channels modulate various cellular functions through efficient and selective conduction of K+ions. The mechanism of ion conduction in potassium channels has recently emerged as a topic of debate. Crystal structures of potassium channels show four K+ions bound to adjacent binding sites in the selectivity filter, while chemical intuition and molecular modeling suggest that the direct ion contacts are unstable. Molecular dynamics (MD) simulations have been instrumental in the study of conduction and gating mechanisms of ion channels. Based on MD simulations, two hypotheses have been proposed, in which the four-ion configuration is an artifact due to either averaged structures or low temperature in crystallographic experiments. The two hypotheses have been supported or challenged by different experiments. Here, MD simulations with polarizable force fields validated byab initiocalculations were used to investigate the ion binding thermodynamics. Contrary to previous beliefs, the four-ion configuration was predicted to be thermodynamically stable after accounting for the complex electrostatic interactions and dielectric screening. Polarization plays a critical role in the thermodynamic stabilities. As a result, the ion conduction likely operates through a simple single-vacancy and water-free mechanism. The simulations explained crystal structures, ion binding experiments and recent controversial mutagenesis experiments. This work provides a clear view of the mechanism underlying the efficient ion conduction and demonstrates the importance of polarization in ion channel simulations.