Publications

Results 51–75 of 100

Search results

Jump to search filters

Compatible meshfree discretization of surface PDEs

Computational Particle Mechanics

Trask, Nathaniel A.; Kuberry, Paul A.

Meshfree discretization of surface partial differential equations is appealing, due to their ability to naturally adapt to deforming motion of the underlying manifold. In this work, we consider an existing scheme proposed by Liang et al. reinterpreted in the context of generalized moving least squares (GMLS), showing that existing numerical analysis from the GMLS literature applies to their scheme. With this interpretation, their approach may then be unified with recent work developing compatible meshfree discretizations for the div-grad problem in Rd. Informally, this is analogous to an extension of collocated finite differences to staggered finite difference methods, but in the manifold setting and with unstructured nodal data. In this way, we obtain a compatible meshfree discretization of elliptic problems on manifolds which is naturally stable for problems with material interfaces, without the need to introduce numerical dissipation or local enrichment near the interface. We provide convergence studies illustrating the high-order convergence and stability of the approach for manufactured solutions and for an adaptation of the classical five-strip benchmark to a cylindrical manifold.

More Details

A spatially adaptive high-order meshless method for fluid–structure interactions

Computer Methods in Applied Mechanics and Engineering

Hu, Wei; Trask, Nathaniel A.; Hu, Xiaozhe; Pan, Wenxiao

We present a scheme implementing an a posteriori refinement strategy in the context of a high-order meshless method for problems involving point singularities and fluid–solid interfaces. The generalized moving least squares (GMLS) discretization used in this work has been previously demonstrated to provide high-order compatible discretization of the Stokes and Darcy problems, offering a high-fidelity simulation tool for problems with moving boundaries. The meshless nature of the discretization is particularly attractive for adaptive h-refinement, especially when resolving the near-field aspects of variables and point singularities governing lubrication effects in fluid–structure interactions. We demonstrate that the resulting spatially adaptive GMLS method is able to achieve optimal convergence in the presence of singularities for both the div-grad and Stokes problems. Further, we present a series of simulations for flows of colloid suspensions, in which the refinement strategy efficiently achieved highly accurate solutions, particularly for colloids with complex geometries.

More Details

Compatible Particle Discretizations. Final LDRD Report

Bochev, Pavel B.; Bosler, Peter A.; Kuberry, Paul A.; Perego, Mauro P.; Peterson, Kara J.; Trask, Nathaniel A.

This report summarizes the work performed under a three year LDRD project aiming to develop mathematical and software foundations for compatible meshfree and particle discretizations. We review major technical accomplishments and project metrics such as publications, conference and colloquia presentations and organization of special sessions and minisimposia. The report concludes with a brief summary of ongoing projects and collaborations that utilize the products of this work.

More Details
Results 51–75 of 100
Results 51–75 of 100