Publications

23 Results
Date Inputs. Currently set to enter a start and end date.
Current Filters Clear all
Publication Type Year

Overview of ML/AI at Sandia

BNL workshop on AI/ML for Safeguards

Michael Reed Smith, Nancy Kay Hayden, David John Stracuzzi, Nathan Shoman

Presentation (non-conference) – 2022 Presentation (non-conference) 2022

SAGE Intrusion Detection System: Sensitivity Analysis Guided Explainability for Machine Learning

Michael Reed Smith, Erin Acquesta, Arlo L. Ames, Alycia Noel Carey, Christopher Roman Cuellar, Richard V. Field, Trevor Maxfield, Scott A. Mitchell, Elizabeth Susan Morris, Blake Cameron Moss, Megan Nyre-Yu, Ahmad Rushdi, Mallory Catherine Stites, Charles Smutz, Xin Zhou

https://www.osti.gov/search/identifier:1820253

SAND Report – 2021 SAND Report 2021

Going Beyond Signature Malware Detection by Learning Behaviors

Malware Technical Exchange Meeting

Nicholas T. Johnson, Eva Domschot, Kanad Khanna, William Philip Kegelmeyer, Christopher Lamb, Ramyaa Ramyaa, Michael Reed Smith, Stephen Joseph Verzi, Xin Zhou, Armida J. Carbajal, Bridget Haus, Joey Burton Ingram

Conference Presentation – 2021 Conference Presentation 2021

SAGE Advice? Assessing the Accuracy of ML Explanations for Model Credibility

NIST AI Assurance Leadership Team

Michael Reed Smith, Erin Acquesta, Richard V. Field, Trevor Maxfield, Blake Cameron Moss, Megan Nyre-Yu, Ahmad Rushdi, Charles Smutz, Mallory Catherine Stites

Presentation (non-conference) – 2020 Presentation (non-conference) 2020

Mind the Gap: On Bridging the Semantic Gap Between Machine Learning and Malware Analysis

13th ACM Workshop on Artificial Intelligence and Security

Michael Reed Smith, Nicholas T. Johnson, Joey Burton Ingram, Armida J. Carbajal, Bridget Irene Haus, Eva Domschot, Ramyaa Ramyaa, Christopher Lamb, Stephen Joseph Verzi, William Philip Kegelmeyer

https://www.osti.gov/search/identifier:1831009

Conference Presentation – 2020 Conference Presentation 2020

Assessing Global Sensitivity Analysis for Credibility in Machine Learning Explainability

SAMSIGlobal Sensitivity Analysis Working Group Meeting

Erin Acquesta, Michael Reed Smith, Richard V. Field, Trevor Maxfield, Ahmad Rushdi

https://www.osti.gov/search/identifier:1820562

Presentation (non-conference) – 2020 Presentation (non-conference) 2020

MalGen: On Bridging the Semantic Gap between Machine Learning and Malware Analysis

Sandia Machine Learning and Deep Learning Workshop

Michael Reed Smith, Armida J. Carbajal, Eva Domschot, Bridget Irene Haus, Joey Burton Ingram, Nicholas T. Johnson, William Philip Kegelmeyer, Christopher Lamb, Ramyaa Ramyaa, Stephen Joseph Verzi

https://www.osti.gov/search/identifier:1811972

Conference Paper – 2020 Conference Paper 2020

Mind the Gap: On Bridging the Semantic Gap between Machine Learning and Malware Analysis

13th ACM Workshop on Artificial Intelligence and Security

Michael Reed Smith, Nicholas T. Johnson, Joey Burton Ingram, Armida J. Carbajal, Bridget Irene Haus, Eva Domschot, Ramyaa Ramyaa, Christopher Lamb, Stephen Joseph Verzi, William Philip Kegelmeyer

https://www.osti.gov/search/identifier:1807188

Conference Paper – 2020 Conference Paper 2020

Mind the Gap: On Bridging the Semantic Gap between Machine Learning and Information Security

The ACM Conference on Computer and Communications Security

Michael Reed Smith, Nicholas T. Johnson, Joey Burton Ingram, Armida J. Carbajal, Ramyaa Ramyaa, Evelyn Domschot, Christopher Lamb, Stephen Joseph Verzi, William Philip Kegelmeyer

https://www.osti.gov/search/identifier:1782493

Conference Paper – 2020 Conference Paper 2020

Crossing the Cleft: Communication Challenges Between Neuroscience and Artificial Intelligence

Frontiers in Computational Neuroscience

Frances S. Chance, James Bradley Aimone, Srideep Musuvathy, Michael Reed Smith, Craig Michael Vineyard, Felix Wang

https://www.osti.gov/search/identifier:1617318

Journal Article – 2020 Journal Article 2020

Neuromorphic Computing Algorithms and Architecture Research at Sandia

Ccd Titans Intern Tech Talk

Aaron Jamison Hill, Jonathon W. Donaldson, Fredrick H. Rothganger, Craig Michael Vineyard, David R. Follett, Pamela L. Follett, Michael Reed Smith, Stephen Joseph Verzi, William Mark Severa, Felix Wang, James Bradley Aimone, John H. Naegle, Conrad D. James

https://www.osti.gov/search/identifier:1645676

Presentation (non-conference) – 2019 Presentation (non-conference) 2019

Self-updating Models with Error Remediation for Bandwidth-constrained Environments

2019 IEEE Space Computing Conference (SCC)

Justin E Doak, Joey Burton Ingram, Michael Reed Smith, Craig Michael Vineyard

https://www.osti.gov/search/identifier:1641249

Conference Paper – 2019 Conference Paper 2019

Self-updating learning models with error correction remediation for bandwidth- constrained environments

IEEE Space Computing Conference (SCC)

Michael Reed Smith, Justin E Doak, Joey Burton Ingram, Craig Michael Vineyard

Abstract – 2019 Abstract 2019

Dynamic Analysis of Executables to Detect and Characterize Malware

IEEE International Conference on Machine Learning and Applications (IEEE ICMLA)

Michael Reed Smith, Joey Burton Ingram, Christopher Lamb, Timothy J. Draelos, Justin E Doak, James Bradley Aimone, Conrad D. James

https://www.osti.gov/search/identifier:1806881

Conference Paper – 2018 Conference Paper 2018

A Spike-Timing Neuromorphic Architecture

IEEE International Conference on Rebooting Computing (ICRC 2017)

Aaron Jamison Hill, Jonathon W. Donaldson, Fredrick Rothganger, Craig Michael Vineyard, David R. Follett, Pamela L. Follett, Michael Reed Smith, Stephen Joseph Verzi, William Mark Severa, Felix Wang, James Bradley Aimone, John H. Naegle, Conrad D. James

https://www.osti.gov/search/identifier:1470698

Conference Paper – 2017 Conference Paper 2017

Steep Deep Spiking Networks

Sandia Machine Learning/Deep Learning (MLDL) Conference

Stephen Joseph Verzi, Ryan Anthony Dellana, William Mark Severa, Michael Reed Smith, Fredrick Rothganger, Conrad D. James, James Bradley Aimone, Craig Michael Vineyard

https://www.osti.gov/search/identifier:1464724

Conference Paper – 2017 Conference Paper 2017

A Digital Neuromorphic Architecture Efficiently Facilitating Complex Synaptic Response Functions Applied to LSMs

The 2017 International Joint Conference on Neural Networks (IJCNN 2017)

Michael Reed Smith, Aaron Jamison Hill, Kristofor David Carlson, Craig Michael Vineyard, Jonathon W. Donaldson, David R. Follett, Pamela L. Follett, John H. Naegle, Conrad D. James, James Bradley Aimone

https://www.osti.gov/search/identifier:1457873

Conference Paper – 2017 Conference Paper 2017

An Efficient Implementation of a Liquid State Machine on the Spiking Temporal Processing Unit

Neuro Inspired Computational Elements Workshop

Michael Reed Smith, Aaron Jamison Hill, Kristofor David Carlson, Craig Michael Vineyard, Jonathon W. Donaldson, David R. Follett, Pamela L. Follett, John H. Naegle, Conrad D. James, James Bradley Aimone

https://www.osti.gov/search/identifier:1427932

Conference Paper – 2017 Conference Paper 2017

An Efficient Implementation of a LSM on the Spiking Temporal Processing Unit

Neuro Inspired Computational Elements Workshop

Michael Reed Smith, Aaron Jamison Hill, Kristofor David Carlson, Craig Michael Vineyard, Jonathon W. Donaldson, David R. Follett, Pamela L. Follett, John H. Naegle, Conrad D. James, James Bradley Aimone, Michael Reed Smith, Michael Reed Smith

https://www.osti.gov/search/identifier:1427931

Conference Paper – 2017 Conference Paper 2017

A neurally inspired spiking temporal processing unit computational architecture

Society for Neuroscience 2016

Craig Michael Vineyard, James Bradley Aimone, Stephen Joseph Verzi, Jonathon W. Donaldson, Michael Reed Smith, Fredrick Rothganger, David R. Follet, Conrad D. James, John H. Naegle

https://www.osti.gov/search/identifier:1526843

Conference Paper – 2016 Conference Paper 2016

Implementation of a Liquid State Machine with Temporal Dynamics on a Novel Spiking Neuromorphic Architecture

Workshop on Neuromorphic Computing and Algorithms, WI-BIH'16

Michael Reed Smith, Aaron Jamison Hill, Kristofor David Carlson, Craig Michael Vineyard, Jonathon W. Donaldson, David R. Follett, Pamela L. Follett, John H. Naegle, Conrad D. James, James Bradley Aimone

https://www.osti.gov/search/identifier:1405258

Conference Paper – 2016 Conference Paper 2016

A neurally inspired spiking temporal processing unit computational architecture

Society for Neuroscience 2016 meeting

Craig Michael Vineyard, James Bradley Aimone, Michael Reed Smith, Stephen Joseph Verzi, Gabriel ANUOLUWAPO Popoola, Felix Wang, Jonathon W. Donaldson, Pamela Follett, David Follett, Conrad D. James, John H. Naegle

Abstract – 2016 Abstract 2016

A neurally inspired spiking temporal processing unit architecture

Society for Neuroscience 2016 meeting

Craig Michael Vineyard, James Bradley Aimone, Michael Reed Smith, Stephen Joseph Verzi, Gabriel ANUOLUWAPO Popoola, Felix Wang, Jonathon W. Donaldson, Pamela Follett, David Follett, Conrad D. James, John H. Naegle

Abstract – 2016 Abstract 2016
Document Title Type Year