13 Results
Skip to search filters

Sensitivity Analysis of OECD Benchmark Tests in BISON

Swiler, Laura P.; Gamble, Kyle G.; Schmidt, Rodney C.; Williamson, Richard W.

This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on sensitivity analysis of a fuels performance benchmark problem. The benchmark problem was defined by the Uncertainty Analysis in Modeling working group of the Nuclear Science Committee, part of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD ). The benchmark problem involv ed steady - state behavior of a fuel pin in a Pressurized Water Reactor (PWR). The problem was created in the BISON Fuels Performance code. Dakota was used to generate and analyze 300 samples of 17 input parameters defining core boundary conditions, manuf acturing tolerances , and fuel properties. There were 24 responses of interest, including fuel centerline temperatures at a variety of locations and burnup levels, fission gas released, axial elongation of the fuel pin, etc. Pearson and Spearman correlatio n coefficients and Sobol' variance - based indices were used to perform the sensitivity analysis. This report summarizes the process and presents results from this study.

More Details

Sensitivity Analysis of the Gap Heat Transfer Model in BISON

Swiler, Laura P.; Schmidt, Rodney C.; Williamson, Richard W.; Perez, Danielle P.

This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

More Details

An introduction to LIME 1.0 and its use in coupling codes for multiphysics simulations

Schmidt, Rodney C.; Belcourt, Kenneth N.; Hooper, Russell H.; Pawlowski, Roger P.

LIME is a small software package for creating multiphysics simulation codes. The name was formed as an acronym denoting 'Lightweight Integrating Multiphysics Environment for coupling codes.' LIME is intended to be especially useful when separate computer codes (which may be written in any standard computer language) already exist to solve different parts of a multiphysics problem. LIME provides the key high-level software (written in C++), a well defined approach (with example templates), and interface requirements to enable the assembly of multiple physics codes into a single coupled-multiphysics simulation code. In this report we introduce important software design characteristics of LIME, describe key components of a typical multiphysics application that might be created using LIME, and provide basic examples of its use - including the customized software that must be written by a user. We also describe the types of modifications that may be needed to individual physics codes in order for them to be incorporated into a LIME-based multiphysics application.

More Details

A theory manual for multi-physics code coupling in LIME

Bartlett, Roscoe B.; Belcourt, Kenneth N.; Hooper, Russell H.; Schmidt, Rodney C.

The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.

More Details

Foundational development of an advanced nuclear reactor integrated safety code

Schmidt, Rodney C.; Hooper, Russell H.; Humphries, Larry; Lorber, Alfred L.; Spotz, William S.

This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

More Details

ChISELS 1.0: theory and user manual :a theoretical modeler of deposition and etch processes in microsystems fabrication

Musson, Lawrence M.; Schmidt, Rodney C.; Ho, Pauline H.; Plimpton, Steven J.

Chemically Induced Surface Evolution with Level-Sets--ChISELS--is a parallel code for modeling 2D and 3D material depositions and etches at feature scales on patterned wafers at low pressures. Designed for efficient use on a variety of computer architectures ranging from single-processor workstations to advanced massively parallel computers running MPI, ChISELS is a platform on which to build and improve upon previous feature-scale modeling tools while taking advantage of the most recent advances in load balancing and scalable solution algorithms. Evolving interfaces are represented using the level-set method and the evolution equations time integrated using a Semi-Lagrangian approach [1]. The computational meshes used are quad-trees (2D) and oct-trees (3D), constructed such that grid refinement is localized to regions near the surface interfaces. As the interface evolves, the mesh is dynamically reconstructed as needed for the grid to remain fine only around the interface. For parallel computation, a domain decomposition scheme with dynamic load balancing is used to distribute the computational work across processors. A ballistic transport model is employed to solve for the fluxes incident on each of the surface elements. Surface chemistry is computed by either coupling to the CHEMKIN software [2] or by providing user defined subroutines. This report describes the theoretical underpinnings, methods, and practical use instruction of the ChISELS 1.0 computer code.

More Details

Feature length-scale modeling of LPCVD & PECVD MEMS fabrication processes

Proposed for publication in the Journal of Microsystems Technologies.

Plimpton, Steven J.; Schmidt, Rodney C.

The surface micromachining processes used to manufacture MEMS devices and integrated circuits transpire at such small length scales and are sufficiently complex that a theoretical analysis of them is particularly inviting. Under development at Sandia National Laboratories (SNL) is Chemically Induced Surface Evolution with Level Sets (ChISELS), a level-set based feature-scale modeler of such processes. The theoretical models used, a description of the software and some example results are presented here. The focus to date has been of low-pressure and plasma enhanced chemical vapor deposition (low-pressure chemical vapor deposition, LPCVD and PECVD) processes. Both are employed in SNLs SUMMiT V technology. Examples of step coverage of SiO{sub 2} into a trench by each of the LPCVD and PECVD process are presented.

More Details

On the Development of the Large Eddy Simulation Approach for Modeling Turbulent Flow: LDRD Final Report

Schmidt, Rodney C.; DesJardin, Paul E.; Voth, Thomas E.; Christon, Mark A.; Kerstein, Alan R.; Wunsch, Scott E.

This report describes research and development of the large eddy simulation (LES) turbulence modeling approach conducted as part of Sandia's laboratory directed research and development (LDRD) program. The emphasis of the work described here has been toward developing the capability to perform accurate and computationally affordable LES calculations of engineering problems using unstructured-grid codes, in wall-bounded geometries and for problems with coupled physics. Specific contributions documented here include (1) the implementation and testing of LES models in Sandia codes, including tests of a new conserved scalar--laminar flamelet SGS combustion model that does not assume statistical independence between the mixture fraction and the scalar dissipation rate, (2) the development and testing of statistical analysis and visualization utility software developed for Exodus II unstructured grid LES, and (3) the development and testing of a novel new LES near-wall subgrid model based on the one-dimensional Turbulence (ODT) model.

More Details
13 Results
13 Results