Results 1–25 of 37
Skip to search filters

Multi-fidelity information fusion and resource allocation

Jakeman, John D.; Eldred, Michael S.; Geraci, Gianluca G.; Seidl, Daniel T.; Smith, Thomas M.; Gorodetsky, Alex A.; Pham, Trung P.; Narayan, Akil N.; Zeng, Xiaoshu Z.; Ghanem, Roger G.

This project created and demonstrated a framework for the efficient and accurate prediction of complex systems with only a limited amount of highly trusted data. These next generation computational multi-fidelity tools fuse multiple information sources of varying cost and accuracy to reduce the computational and experimental resources needed for designing and assessing complex multi-physics/scale/component systems. These tools have already been used to substantially improve the computational efficiency of simulation aided modeling activities from assessing thermal battery performance to predicting material deformation. This report summarizes the work carried out during a two year LDRD project. Specifically we present our technical accomplishments; project outputs such as publications, presentations and professional leadership activities; and the project’s legacy.

More Details

Electrostatic Relativistic Fluid Models of Electron Emission in a Warm Diode

IEEE International Conference on Plasma Science (ICOPS)

Hamlin, Nathaniel D.; Smith, Thomas M.; Roberds, Nicholas R.; Glines, Forrest W.; Beckwith, Kristian B.

A semi-analytic fluid model has been developed for characterizing relativistic electron emission across a warm diode gap. Here we demonstrate the use of this model in (i) verifying multi-fluid codes in modeling compressible relativistic electron flows (the EMPIRE-Fluid code is used as an example; see also Ref. 1), (ii) elucidating key physics mechanisms characterizing the influence of compressibility and relativistic injection speed of the electron flow, and (iii) characterizing the regimes over which a fluid model recovers physically reasonable solutions.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; De Zetter, Karen J.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Glines, Forrest W.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details

EMPIRE-PIC Code Verification of a Cold Diode

Smith, Thomas M.; Pointon, T.D.P.; Cartwright, K.L.C.; Rider, W.J. R.

This report presents the code verification of EMPIRE-PIC to the analytic solution to a cold diode which was first derived by Jaffe. The cold diode was simulated using EMPIRE-PIC and the error norms were computed based on the Jaffe solution. The diode geometry is one-dimensional and uses the EMPIRE electrostatic field solver. After a transient start-up phase as the electrons first cross the anode-cathode gap, the simulations reach an equilibrium where the electric potential and electric field are approximately steady. The expected spatial order of convergence for potential, electric field and particle velocity are observed.

More Details

Estimation of inflow uncertainties in laminar hypersonic double-cone experiments

AIAA Scitech Forum

Ray, Jaideep R.; Kieweg, Sarah K.; Dinzl, Derek J.; Carnes, Brian C.; Weirs, Vincent G.; Freno, Brian A.; Howard, Micah A.; Smith, Thomas M.

We propose herein a probabilistic framework for assessing the consistency of an experimental dataset, i.e., whether the stated experimental conditions are consistent with the measurements provided. In case the dataset is inconsistent, our framework allows one to hypothesize and test sources of inconsistencies. This is crucial in model validation efforts. The framework relies on Bayesian inference to estimate experimental settings deemed uncertain, from measurements deemed accurate. The quality of the inferred variables is gauged by its ability to reproduce held-out experimental measurements. We test the correctness of the framework on three double-cone experiments conducted in the CUBRC Inc.'s LENS-I shock tunnel, which have also been numerically simulated successfully. Thereafter, we use the framework to investigate two double-cone experiments (executed in the LENS-XX shock tunnel) which have encountered difficulties when used in model validation exercises. We detect an inconsistency with one of the LENS-XX experiments. In addition, we hypothesize two causes for our inability to simulate LEXS-XX experiments accurately and test them using our framework. We find that there is no single cause that explains all the discrepancies between model predictions and experimental data, but different causes explain different discrepancies, to larger or smaller extent. We end by proposing that uncertainty quantification methods be used more widely to understand experiments and characterize facilities, and we cite three different methods to do so, the third of which we present in this paper.

More Details
Results 1–25 of 37
Results 1–25 of 37