Publications

Results 1–25 of 223
Date Inputs. Currently set to enter a start and end date.
Current Filters Clear all
Publication Type Year

PyApprox: Enabling efficient model analysis

John Davis Jakeman

https://www.osti.gov/search/identifier:1879614

SAND Report – 2022 SAND Report 2022

Embedded uncertainty estimation for data-driven surrogates to enable trustworthy ML for UQ

Machine Learning and Deep Learning Conference

Timothy Michael Wildey, Gianluca Geraci, Michael S. Eldred, John Davis Jakeman, Owen Davis, Teresa Portone, Tian Yu NMN Yen, Bryan William Reuter, Alex Gorodetsky, Ahmad Rushdi, Daniele Schiavazzi, Lauren Partin

Conference Presentation – 2022 Conference Presentation 2022

Coupling optimal experimental design and optimal control

World Congress on Computational Mechanics

Rebekah Dale White, Bart G van Bloemen Waanders, John Davis Jakeman, Alen Alexanderian, Arvind Saibaba

Conference Presentation – 2022 Conference Presentation 2022

Machine learning in the context of inverse, control, and experimental design problems

Machine learning and deep learning -- internal Sandia conference

Rebekah Dale White, Bart G van Bloemen Waanders, John Davis Jakeman

Conference Presentation – 2022 Conference Presentation 2022

Overview and perspectives on multifidelity UQ

Inria Platon projet-team seminar

Gianluca Geraci, Michael S. Eldred, Alex Gorodetsky, John Davis Jakeman, Teresa Portone, Bryan William Reuter

Abstract – 2022 Abstract 2022

Bayesian risk-averse optimal experimental design with feedback

UT Austin working group

Rebekah Dale White, Bart G van Bloemen Waanders, Drew Philip Kouri, John Davis Jakeman, Alen Alexanderian

Presentation (non-conference) – 2022 Presentation (non-conference) 2022

Model Tuning for Multifidelity Sampling in Dakota

8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS)

Michael S. Eldred, Gianluca Geraci, Bryan William Reuter, Teresa Portone, John Davis Jakeman, Alex A. Gorodetsky

Conference Presentation – 2022 Conference Presentation 2022

Reverse-mode differentiation in arbitrary tensor network format: with application to supervised learning

Journal of Machine Learning Research

Cosmin Safta, John Davis Jakeman, Alex Gorodetsky

https://www.osti.gov/search/identifier:1872019

Journal Article – 2022 Journal Article 2022

PyApprox: Approximation and Probabilistic Analysis of Data

SIAM Conference on Uncertainty Quantification

John Davis Jakeman

Conference Presentation – 2022 Conference Presentation 2022

Improving Digital Twins by Learning from a Fleet of Assets

SIAM Conference on Uncertainty Quantification

Daniel Thomas Seidl, John Davis Jakeman

Conference Presentation – 2022 Conference Presentation 2022

Barlow twins reduced order modeling with uncertainty quantification for contact problems

USACM Thematic Conference on Uncertainty Quantification for Machine Learning Integrated Physics Modeling

Teeratorn Kadeethum, John Davis Jakeman, Youngsoo Choi, Nikolaos Bouklas, Hongkyu Yoon

Abstract – 2022 Abstract 2022

All-at-Once (and Bi-Level) Model Tuning for Multifidelity Sampling

SIAM Conference on Uncertainty Quantification (UQ22)

Michael S. Eldred, Gianluca Geraci, Teresa Portone, Alex A. Gorodetsky, John Davis Jakeman

Conference Presentation – 2022 Conference Presentation 2022

Quantifying Uncertainty in E3SM via Functional Tensor Network Approximations

Siam Uq22

Cosmin Safta, John Davis Jakeman, Khachik Sargsyan

Conference Presentation – 2022 Conference Presentation 2022

Exploring risk-averse design criteria for sequential optimal experimental design in a Bayesian setting

Siam Uq

Rebekah Dale White, Bart G van Bloemen Waanders, John Davis Jakeman, Alexanderian Alen, Drew Philip Kouri

Conference Presentation – 2022 Conference Presentation 2022

Machine Learning And Uncertainty Quantification For Coupled Multi-physics, Multi-scale And Multi-fidelity Modeling

X International Conference on Computational Methods for Coupled Problems

Lorenzo Tamellini, John Davis Jakeman, Irina Kalashnikova Tezaur

Abstract – 2022 Abstract 2022

Automating Model Selection and Tuning for Multifidelity UQ (MFUQ)

Siam Uq 22

James Warner, Geoffrey Bomarito, Gianluca Geraci, Michael S. Eldred, Marten Thompson, John Davis Jakeman, Patrick Leser, Paul Leser, Alex Gorodetsky

Conference Presentation – 2022 Conference Presentation 2022

Global Sensitivity Analysis Using the Ultra-Low Resolution Energy Exascale Earth System Model (E3SM)

Siam Uq 2022

Irina Kalashnikova Tezaur, Kara J. Peterson, Amy Jo Powell, John Davis Jakeman, Erika Louise Roesler

Conference Presentation – 2022 Conference Presentation 2022

Adaptive experimental design for multi-fidelity surrogate modeling of multi-disciplinary systems

International Journal For Numerical Methods In Engineering

John Davis Jakeman, Sam Friedman, Michael S. Eldred, Lorenzo Tamellini, Alex Gorodestky, Doug Allaire

https://www.osti.gov/search/identifier:1855808

Journal Article – 2022 Journal Article 2022

Identifying metrics in adaptive evaluation of impacts of factor fixing on objective functions under model structure uncertainty

2022 International Environmental Modelling and Software Society Biennial Meeting

Qian Wang, Joseph Guillaume, John Davis Jakeman, Barry Croke, Tao Yang, Anthony Jakeman

Abstract – 2022 Abstract 2022

Surrogate Modeling For Efficiently, Accurately and Conservatively Estimating Measures of Risk

Reliability Engineering & System Safety

John Davis Jakeman, Drew Philip Kouri, Jose Gabriel Huerta

https://www.osti.gov/search/identifier:1845389

Journal Article – 2022 Journal Article 2022

Assessing the predictive impact of factor fixing with an adaptive uncertainty-based approach

Environmental Modelling & Software

Qian (Australian National University) Wang, Joseph (Australian National University) Guillaume, John Davis Jakeman, Tao(Hohai University) Yang, Takuya (Australian National University) Iwanaga, Barry (Australian National University) Croke, Tony (Australian National University) Jakeman

https://www.osti.gov/search/identifier:1845388

Journal Article – 2022 Journal Article 2022

Multi-fidelity machine learning and uncertainty quantification with PyApprox

The 8th European Congress on Computational Methods in Applied Sciences and Engineering

John Davis Jakeman

Abstract – 2021 Abstract 2021

Functional Tensor Network Approximations for E3SM Land Model

AGU Fall Meeting 2021

Cosmin Safta, Khachik Sargsyan, John Davis Jakeman

Conference Presentation – 2021 Conference Presentation 2021

Model Tuning For Multifidelity Sampling In Dakota

8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2022)

Michael S. Eldred, Gianluca Geraci, Bryan William Reuter, Teresa Portone, John Davis Jakeman, Alex A. Gorodetsky

Abstract – 2021 Abstract 2021

Improving Multi-Model Trajectory Simulation Estimators using Model Selection and Tuning

AIAA SciTech 2021

Geoffrey F. Bomarito, Gianluca Geraci, James E. Warner, Patrick E. Leser, William P. Leser, Michael S. Eldred, John Davis Jakeman, Alex A. Gorodetsky

Conference Proceeding – 2021 Conference Proceeding 2021
Document Title Type Year
Results 1–25 of 223