Publications

Results 1–25 of 94

Search results

Jump to search filters

Deployment of Multifidelity Uncertainty Quantification for Thermal Battery Assessment Part I: Algorithms and Single Cell Results

Eldred, Michael S.; Adams, Brian M.; Geraci, Gianluca G.; Portone, Teresa P.; Ridgway, Elliott M.; Stephens, John A.; Wildey, Timothy M.

This report documents the results of an FY22 ASC V&V level 2 milestone demonstrating new algorithms for multifidelity uncertainty quantification. Part I of the report describes the algorithms, studies their performance on a simple model problem, and then deploys the methods to a thermal battery example from the open literature. Part II (restricted distribution) applies the multifidelity UQ methods to specific thermal batteries of interest to the NNSA/ASC program.

More Details

Multi-fidelity information fusion and resource allocation

Jakeman, John D.; Eldred, Michael S.; Geraci, Gianluca G.; Seidl, Daniel T.; Smith, Thomas M.; Gorodetsky, Alex A.; Pham, Trung; Narayan, Akil; Zeng, Xiaoshu; Ghanem, Roger

This project created and demonstrated a framework for the efficient and accurate prediction of complex systems with only a limited amount of highly trusted data. These next generation computational multi-fidelity tools fuse multiple information sources of varying cost and accuracy to reduce the computational and experimental resources needed for designing and assessing complex multi-physics/scale/component systems. These tools have already been used to substantially improve the computational efficiency of simulation aided modeling activities from assessing thermal battery performance to predicting material deformation. This report summarizes the work carried out during a two year LDRD project. Specifically we present our technical accomplishments; project outputs such as publications, presentations and professional leadership activities; and the project’s legacy.

More Details

Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) (Final Report)

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She'Ifa

This report summarizes the activities performed as part of the Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) Grand Challenge LDRD project. We provide an overview of the research done in this project, including work on cyber emulation, uncertainty quantification, and optimization. We present examples of integrated analyses performed on two case studies: a network scanning/detection study and a malware command and control study. We highlight the importance of experimental workflows and list references of papers and presentations developed under this project. We outline lessons learned and suggestions for future work.

More Details

Science & Engineering of Cyber Security by Uncertainty Quantification and Rigorous Experimentation (SECURE) HANDBOOK

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, and She?Ifa S.

Abstract not provided.

MFNets: data efficient all-at-once learning of multifidelity surrogates as directed networks of information sources

Computational Mechanics

Gorodetsky, Alex A.; Jakeman, John D.; Geraci, Gianluca G.

We present an approach for constructing a surrogate from ensembles of information sources of varying cost and accuracy. The multifidelity surrogate encodes connections between information sources as a directed acyclic graph, and is trained via gradient-based minimization of a nonlinear least squares objective. While the vast majority of state-of-the-art assumes hierarchical connections between information sources, our approach works with flexibly structured information sources that may not admit a strict hierarchy. The formulation has two advantages: (1) increased data efficiency due to parsimonious multifidelity networks that can be tailored to the application; and (2) no constraints on the training data—we can combine noisy, non-nested evaluations of the information sources. Finally, numerical examples ranging from synthetic to physics-based computational mechanics simulations indicate the error in our approach can be orders-of-magnitude smaller, particularly in the low-data regime, than single-fidelity and hierarchical multifidelity approaches.

More Details

IMPACT OF SAMPLING STRATEGIES IN THE POLYNOMIAL CHAOS SURROGATE CONSTRUCTION FOR MONTE CARLO TRANSPORT APPLICATIONS

Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2021

Geraci, Gianluca G.; Olson, Aaron J.

The accurate construction of a surrogate model is an effective and efficient strategy for performing Uncertainty Quantification (UQ) analyses of expensive and complex engineering systems. Surrogate models are especially powerful whenever the UQ analysis requires the computation of statistics which are difficult and prohibitively expensive to obtain via a direct sampling of the model, e.g. high-order moments and probability density functions. In this paper, we discuss the construction of a polynomial chaos expansion (PCE) surrogate model for radiation transport problems for which quantities of interest are obtained via Monte Carlo simulations. In this context, it is imperative to account for the statistical variability of the simulator as well as the variability associated with the uncertain parameter inputs. More formally, in this paper we focus on understanding the impact of the Monte Carlo transport variability on the recovery of the PCE coefficients. We are able to identify the contribution of both the number of uncertain parameter samples and the number of particle histories simulated per sample in the PCE coefficient recovery. Our theoretical results indicate an accuracy improvement when using few Monte Carlo histories per random sample with respect to configurations with an equivalent computational cost. These theoretical results are numerically illustrated for a simple synthetic example and two configurations of a one-dimensional radiation transport problem in which a slab is represented by means of materials with uncertain cross sections.

More Details

Exploration of multifidelity UQ sampling strategies for computer network applications

International Journal for Uncertainty Quantification

Geraci, Gianluca G.; Crussell, Jonathan C.; Swiler, Laura P.; Debusschere, Bert D.

Network modeling is a powerful tool to enable rapid analysis of complex systems that can be challenging to study directly using physical testing. Two approaches are considered: emulation and simulation. The former runs real software on virtualized hardware, while the latter mimics the behavior of network components and their interactions in software. Although emulation provides an accurate representation of physical networks, this approach alone cannot guarantee the characterization of the system under realistic operative conditions. Operative conditions for physical networks are often characterized by intrinsic variability (payload size, packet latency, etc.) or a lack of precise knowledge regarding the network configuration (bandwidth, delays, etc.); therefore uncertainty quantification (UQ) strategies should be also employed. UQ strategies require multiple evaluations of the system with a number of evaluation instances that roughly increases with the problem dimensionality, i.e., the number of uncertain parameters. It follows that a typical UQ workflow for network modeling based on emulation can easily become unattainable due to its prohibitive computational cost. In this paper, a multifidelity sampling approach is discussed and applied to network modeling problems. The main idea is to optimally fuse information coming from simulations, which are a low-fidelity version of the emulation problem of interest, in order to decrease the estimator variance. By reducing the estimator variance in a sampling approach it is usually possible to obtain more reliable statistics and therefore a more reliable system characterization. Several network problems of increasing difficulty are presented. For each of them, the performance of the multifidelity estimator is compared with respect to the single fidelity counterpart, namely, Monte Carlo sampling. For all the test problems studied in this work, the multifidelity estimator demonstrated an increased efficiency with respect to MC.

More Details
Results 1–25 of 94
Results 1–25 of 94