6 Results
Skip to search filters

Super-Resolution Approaches in Three-Dimensions for Classification and Screening of Commercial-Off-The-Shelf Components

Polonsky, Andrew P.; Martinez, Carianne M.; Appleby, Catherine A.; Bernard, Sylvain R.; Griego, J.J.M.; Noell, Philip N.; Pathare, Priya R.

X-ray computed tomography is generally a primary step in characterization of defective electronic components, but is generally too slow to screen large lots of components. Super-resolution imaging approaches, in which higher-resolution data is inferred from lower-resolution images, have the potential to substantially reduce collection times for data volumes accessible via x-ray computed tomography. Here we seek to advance existing two-dimensional super-resolution approaches directly to three-dimensional computed tomography data. Multiple scan resolutions over a half order of magnitude of resolution were collected for four classes of commercial electronic components to serve as training data for a deep-learning, super-resolution network. A modular python framework for three-dimensional super-resolution of computed tomography data has been developed and trained over multiple classes of electronic components. Initial training and testing demonstrate the vast promise for these approaches, which have the potential for more than an order of magnitude reduction in collection time for electronic component screening.

More Details

Quantifying the unknown impact of segmentation uncertainty on image-based simulations

Nature Communications

Krygier, Michael K.; LaBonte, Tyler; Martinez, Carianne M.; Norris, Chance A.; Sharma, Krish; Collins, Lincoln; Mukherjee, Partha P.; Roberts, Scott A.

Image-based simulation, the use of 3D images to calculate physical quantities, relies on image segmentation for geometry creation. However, this process introduces image segmentation uncertainty because different segmentation tools (both manual and machine-learning-based) will each produce a unique and valid segmentation. First, we demonstrate that these variations propagate into the physics simulations, compromising the resulting physics quantities. Second, we propose a general framework for rapidly quantifying segmentation uncertainty. Through the creation and sampling of segmentation uncertainty probability maps, we systematically and objectively create uncertainty distributions of the physics quantities. We show that physics quantity uncertainty distributions can follow a Normal distribution, but, in more complicated physics simulations, the resulting uncertainty distribution can be surprisingly nontrivial. We establish that bounding segmentation uncertainty can fail in these nontrivial situations. While our work does not eliminate segmentation uncertainty, it improves simulation credibility by making visible the previously unrecognized segmentation uncertainty plaguing image-based simulation.

More Details

Credible, Automated Meshing of Images (CAMI)

Roberts, Scott A.; Donohoe, Brendan D.; Martinez, Carianne M.; Krygier, Michael K.; Hernandez-Sanchez, Bernadette A.; Foster, Collin W.; Collins, Lincoln; Greene, Benjamin G.; Noble, David R.; Norris, Chance A.; Potter, Kevin M.; Roberts, Christine C.; Neal, Kyle D.; Bernard, Sylvain R.; Schroeder, Benjamin B.; Trembacki, Bradley L.; LaBonte, Tyler L.; Sharma, Krish S.; Ganter, Tyler G.; Jones, Jessica E.; Smith, Matthew D.

Abstract not provided.

6 Results
6 Results