Here, we examine the coupling of the patterned-interface-reconstruction (PIR) algorithm with the extended finite element method (X-FEM) for general multi-material problems over structured and unstructured meshes. The coupled method offers the advantages of allowing for local, element-based reconstructions of the interface, and facilitates the imposition of discrete conservation laws. Of particular note is the use of an interface representation that is volume-of-fluid based, giving rise to a segmented interface representation that is not continuous across element boundaries. In conjunction with such a representation, we employ enrichment with the ridge function for treating material interfaces and an analog to Heaviside enrichment for treating free surfaces. We examine a series of benchmark problems that quantify the convergence aspects of the coupled method and examine the sensitivity to noise in the interface reconstruction. Finally, the fidelity of a remapping strategy is also examined for a moving interface problem.