The Direct Simulation Monte Carlo (DSMC) method has been used for more than 50 years to simulate rarefied gases. The advent of modern supercomputers has brought higher-density near-continuum flows within range. This in turn has revived the debate as to whether the Boltzmann equation, which assumes molecular chaos, can be used to simulate continuum flows when they become turbulent. In an effort to settle this debate, two canonical turbulent flows are examined, and the results are compared to available continuum theoretical and numerical results for the Navier-Stokes equations.
We provide a demonstration that gas-kinetic methods incorporating molecular chaos can simulate the sustained turbulence that occurs in wall-bounded turbulent shear flows. The direct simulation Monte Carlo method, a gas-kinetic molecular method that enforces molecular chaos for gas-molecule collisions, is used to simulate the minimal Couette flow at Re=500. The resulting law of the wall, the average wall shear stress, the average kinetic energy, and the continually regenerating coherent structures all agree closely with corresponding results from direct numerical simulation of the Navier-Stokes equations. These results indicate that molecular chaos for collisions in gas-kinetic methods does not prevent development of molecular-scale long-range correlations required to form hydrodynamic-scale turbulent coherent structures.
We provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov -5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can be used to investigate turbulent flows quantitatively.