Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.
This project focused on research and algorithmic development in optimization under uncertainty (OUU) problems driven by earth penetrator (EP) designs. While taking into account uncertainty, we addressed three challenges in current simulation-based engineering design and analysis processes. The first challenge required leveraging small local samples, already constructed by optimization algorithms, to build effective surrogate models. We used Gaussian Process (GP) models to construct these surrogates. We developed two OUU algorithms using 'local' GPs (OUU-LGP) and one OUU algorithm using 'global' GPs (OUU-GGP) that appear competitive or better than current methods. The second challenge was to develop a methodical design process based on multi-resolution, multi-fidelity models. We developed a Multi-Fidelity Bayesian Auto-regressive process (MF-BAP). The third challenge involved the development of tools that are computational feasible and accessible. We created MATLAB{reg_sign} and initial DAKOTA implementations of our algorithms.
We have developed a novel approach to modeling the transmembrane spanning helical bundles of integral membrane proteins using only a sparse set of distance constraints, such as those derived from MS3-D, dipolar-EPR and FRET experiments. Algorithms have been written for searching the conformational space of membrane protein folds matching the set of distance constraints, which provides initial structures for local conformational searches. Local conformation search is achieved by optimizing these candidates against a custom penalty function that incorporates both measures derived from statistical analysis of solved membrane protein structures and distance constraints obtained from experiments. This results in refined helical bundles to which the interhelical loops and amino acid side-chains are added. Using a set of only 27 distance constraints extracted from the literature, our methods successfully recover the structure of dark-adapted rhodopsin to within 3.2 {angstrom} of the crystal structure.