In the following paper, we discuss how to design an ensemble of experiments through the use of compressed sensing. Specifically, we show how to conduct a small number of physical experiments and then use compressed sensing to reconstruct a larger set of data. In order to accomplish this, we organize our results into four sections. We begin by extending the theory of compressed sensing to a finite product of Hilbert spaces. Then, we show how these results apply to experiment design. Next, we develop an efficient reconstruction algorithm that allows us to reconstruct experimental data projected onto a finite element basis. Finally, we verify our approach with two computational experiments.