8 Results
Skip to search filters

Comprehensive Material Characterization and Simultaneous Model Calibration for Improved Computational Simulation Credibility

Seidl, Daniel T.; Jones, Elizabeth M.; Lester, Brian T.

Computational simulation is increasingly relied upon for high-consequence engineering decisions, and a foundational element to solid mechanics simulations is a credible material model. Our ultimate vision is to interlace material characterization and model calibration in a real-time feedback loop, where the current model calibration results will drive the experiment to load regimes that add the most useful information to reduce parameter uncertainty. The current work investigated one key step to this Interlaced Characterization and Calibration (ICC) paradigm, using a finite load-path tree to incorporate history/path dependency of nonlinear material models into a network of surrogate models that replace computationally-expensive finite-element analyses. Our reference simulation was an elastoplastic material point subject to biaxial deformation with a Hill anisotropic yield criterion. Training data was generated using either a space-filling or adaptive sampling method, and surrogates were built using either Gaussian process or polynomial chaos expansion methods. Surrogate error was evaluated to be on the order of 10⁻5 and 10⁻3 percent for the space-filling and adaptive sampling training data, respectively. Direct Bayesian inference was performed with the surrogate network and with the reference material point simulator, and results agreed to within 3 significant figures for the mean parameter values, with a reduction in computational cost over 5 orders of magnitude. These results bought down risk regarding the surrogate network and facilitated a successful FY22-24 full LDRD proposal to research and develop the complete ICC paradigm.

More Details

Library of Advanced Materials for Engineering (LAME) 4.50

Merewether, Mark T.; Crane, Nathan K.; Plews, Julia A.; de Frias, Gabriel J.; Le, San L.; Littlewood, David J.; Mosby, Matthew D.; Pierson, Kendall H.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Xavier, Patrick G.; Scherzinger, William M.; Lester, Brian T.

Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAME advanced material model library has grown to address this challenge by implement- ing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting imple- mentation. Therefore, to enhance confidence and enable the utilization of the LAME library in application, this effort seeks to document and verify the various models in the LAME library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verifi- cation tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, R.A.; Argibay, Nicolas A.; Allen, Kyle M.; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad B.; Brown, Judith A.; Burchard, Ross L.; Chandross, M.; Cook, Adam W.; DiAntonio, Christopher D.; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis R.; Ivanoff, Thomas I.; Jared, Bradley H.; Johnson, Kyle J.; Kammler, Daniel K.; Koepke, Joshua R.; Kustas, Andrew K.; Lavin, Judith M.; Leathe, Nicholas L.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal S.; Martinez, Mario J.; Moser, Daniel M.; Rodgers, Theron R.; Seidl, Daniel T.; Brown-Shaklee, Harlan J.; Stanford, Joshua S.; Stender, Michael S.; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha T.; Trembacki, Bradley T.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, R.A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David M.; Cook, Adam W.; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua S.; Boyce, Brad B.; Johnson, Kyle J.; Rodgers, Theron R.; Ford, Kurtis R.; Martinez, Mario J.; Moser, Daniel M.; van Bloemen Waanders, Bart G.; Chandross, M.; Abdeljawad, Fadi F.; Allen, Kyle M.; Stender, Michael S.; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas A.; Brown-Shaklee, Harlan J.; Kustas, Andrew K.; Sugar, Joshua D.; Kammler, Daniel K.; Wilson, Mark A.

Abstract not provided.

8 Results
8 Results