Publications

5 Results

Search results

Jump to search filters

$\mathrm{LAMMPS}$ - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales

Computer Physics Communications

Thompson, Aidan P.; Aktulga, H.M.; Berger, Richard; Bolintineanu, Dan S.; Brown, W.M.; Crozier, Paul C.; In 'T Veld, Pieter J.; Kohlmeyer, Axel; Moore, Stan G.; Nguyen, Trung D.; Shan, Ray; Stevens, Mark J.; Tranchida, Julien; Trott, Christian R.; Plimpton, Steven J.

Since the classical molecular dynamics simulator LAMMPS was released as an open source code in 2004, it has become a widely-used tool for particle-based modeling of materials at length scales ranging from atomic to mesoscale to continuum. Reasons for its popularity are that it provides a wide variety of particle interaction models for different materials, that it runs on any platform from a single CPU core to the largest supercomputers with accelerators, and that it gives users control over simulation details, either via the input script or by adding code for new interatomic potentials, constraints, diagnostics, or other features needed for their models. As a result, hundreds of people have contributed new capabilities to LAMMPS and it has grown from fifty thousand lines of code in 2004 to a million lines today. In this paper several of the fundamental algorithms used in LAMMPS are described along with the design strategies which have made it flexible for both users and developers. We also highlight some capabilities recently added to the code which were enabled by this flexibility, including dynamic load balancing, on-the-fly visualization, magnetic spin dynamics models, and quantum-accuracy machine learning interatomic potentials.

More Details

Modeling the coupled mechanics, transport, and growth processes in collagen tissues

Holdych, David J.; Stevens, Mark J.; In 't Veld, Pieter J.

The purpose of this project is to develop tools to model and simulate the processes of self-assembly and growth in biological systems from the molecular to the continuum length scales. The model biological system chosen for the study is the tendon fiber which is composed mainly of Type I collagen fibrils. The macroscopic processes of self-assembly and growth at the fiber scale arise from microscopic processes at the fibrillar and molecular length scales. At these nano-scopic length scales, we employed molecular modeling and simulation method to characterize the mechanical behavior and stability of the collagen triple helix and the collagen fibril. To obtain the physical parameters governing mass transport in the tendon fiber we performed direct numerical simulations of fluid flow and solute transport through an idealized fibrillar microstructure. At the continuum scale, we developed a mixture theory approach for modeling the coupled processes of mechanical deformation, transport, and species inter-conversion involved in growth. In the mixture theory approach, the microstructure of the tissue is represented by the species concentration and transport and material parameters, obtained from fibril and molecular scale calculations, while the mechanical deformation, transport, and growth processes are governed by balance laws and constitutive relations developed within a thermodynamically consistent framework.

More Details

Substructured multibody molecular dynamics

Crozier, Paul C.; Grest, Gary S.; Ismail, Ahmed I.; Lehoucq, Richard B.; Plimpton, Steven J.; Stevens, Mark J.

We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

More Details

Predicting Function of Biological Macromolecules: A Summary of LDRD Activities: Project 10746

Frink, Laura J.; Rempe, Susan R.; Means, Shawn A.; Stevens, Mark J.; Crozier, Paul C.; Martin, Marcus G.; Sears, Mark P.; Hjalmarson, Harold P.

This LDRD project has involved the development and application of Sandia's massively parallel materials modeling software to several significant biophysical systems. They have been successful in applying the molecular dynamics code LAMMPS to modeling DNA, unstructured proteins, and lipid membranes. They have developed and applied a coupled transport-molecular theory code (Tramonto) to study ion channel proteins with gramicidin A as a prototype. they have used the Towhee configurational bias Monte-Carlo code to perform rigorous tests of biological force fields. they have also applied the MP-Sala reacting-diffusion code to model cellular systems. Electroporation of cell membranes has also been studied, and detailed quantum mechanical studies of ion solvation have been performed. In addition, new molecular theory algorithms have been developed (in FasTram) that may ultimately make protein solvation calculations feasible on workstations. Finally, they have begun implementation of a combined molecular theory and configurational bias Monte-Carlo code. They note that this LDRD has provided a basis for several new internal (e.g. several new LDRD) and external (e.g. 4 NIH proposals and a DOE/Genomes to Life) proposals.

More Details
5 Results
5 Results