Project 4: Fatigue Behavior of Fe-Co-2V using Experimental, Computational, and Analytical Techniques

Students: Jacob Biddlecom, Benedict Pineyro, Matthew Mills
Mentors: Kyle Johnson, Scott Grutzik, Tariq Khraishi, Adam Brink, Matthew Brake

July 31, 2018
Mentors

Kyle Johnson (SNL)

Scott Grutzik (SNL)

Adam Brink (SNL)

Matthew Brake (Rice University)

Tariq Khraishi (UNM)
Motivation

- Fe-Co-2V is soft, ferromagnetic material commonly used for electrical components
- Often exhibits low strength, poor ductility, and low workability due to an ordered B2 microstructure
- Limited fatigue data currently exists for Fe-Co-2V

Project Goal

Characterize the fatigue properties of Fe-Co-2V through strain-controlled fatigue testing coupled with numerical and analytical modeling

[Source: Stoloff et al., Scripta Metallurgica et Materialia, 1992]
Additively Manufactured (AM) Fe-Co-2V

- Producing Fe-Co-2V using AM could potentially improve its mechanical properties
- AM Specimens exhibited significant cracking, likely from thermal residual stresses
- Proceeded to use wrought Fe-Co-2V for the study
Quasi-Static, Monotonic Tension Tests

Average $E = 215 \text{ GPa}$
Strain-Controlled Fatigue Testing (R=-1, 1 Hz)
Strain-Controlled Fatigue Testing (R=-1, 1 Hz)

\[\Delta \varepsilon = \frac{2\sigma_f'}{E} (2N_f)^b + 2\varepsilon_f' (2N_f)^c \]

\[R^2 = 0.97 \]
Strain-Controlled Fatigue Testing (R=-1, 1 Hz)
SEM – 1mm Scale
SEM – 100µm Scale
SEM – 40µm Scale
Calibration – Methods

- Gradient
 - Sequential Least Squared Programming (SLQSP)
 - Nelder-Mead

- Global
 - brute
 - basinhopping

Error Metric:

\[
\text{MSE} = \frac{1}{n} \sum_{i=0}^{n} |f_i - y_i|^2
\]

- Weighted function
Calibration – Methods

Gradient
- Fast Convergence
- Susceptible to local minima vs. global

Global

\[y = a \cdot \sin(x) \cdot \exp(bx) + cx \]
Calibration – Methods

Gradient

Global

- Guarantees minima
- Inefficient, can run into memory problems
Calibration – Data

Monotonic

Cyclic
Monotonic Calibration

J_2 Plasticity

- Generic Implementation of a von Mises yield surface with kinematic and isotropic hardening features

Power Law

- Describes isotropic hardening of the material

$$\bar{\sigma} = \sigma_y + A(\bar{\varepsilon}^p - \varepsilon_L)^n$$

Parameters

$E, \sigma_y, \varepsilon_L, \nu, n, A$
Plastic Hardening

Isotropic Hardening
- Uniform shift of yield surface
- Compresses at maximum of current yield stress σ_y

Kinematic Hardening
- Asymmetry between compressive and tensile yield stress
- Bauschinger’s Effect
- Max compression of initial yield stress σ_{y0}
Cyclic Calibration

BCJ_MEM

- Rate and temperature-dependent elastoviscoplasticity model with isotropic damage
- Includes effects of recrystallization and grain growth

Plastic Strain

\[\dot{\varepsilon}_p = f(\theta) \sinh \left(\frac{\sigma}{\kappa + Y(\theta)} - 1 \right) \]

\[\dot{\kappa}(\kappa, H, R_{d1}) \]

Parameters

\[E, \sigma_y, \nu, H_1, h_1, R_{d1}, r_{d1} \]
Cyclic Fit – 2

Ramberg-Osgood Curve
- Based on cyclic stress and strain amplitudes from near half the fatigue life
- Used to obtain n' and H' for analytical model

$$\varepsilon_a = \frac{\sigma_a}{E} + \left(\frac{\sigma_a}{H'}\right)^{n'}$$

Parameter Values:
- $n' = 0.0112$
- $H' = 7.13 \cdot 10^{10}$ Pa
Multi-Stage Fatigue (MSF) Model

\[N_{total} = N_{INC} + N_{SC} + N_{LC} \]

Incubation Cycles, \(N_{INC} \):

\[\beta = \frac{\Delta \gamma_{max}^p}{2} = C_{INC} N_{INC}^\alpha \]

Small Crack Growth Cycles, \(N_{SC} \):

\[\left(\frac{da}{dN} \right)_{SC} = \chi (\Delta CTOD - \Delta CTOD_{th}) \]

Long Crack Growth Cycles:

\[\left(\frac{da}{dN} \right)_{LC} = \frac{C_i (\Delta K_{eff})^{n_i}}{\left[1 - \left(\frac{K_{max}}{K_{Ic}} \right)^q \right]} \]

Source: McDowell et al., Eng Fract Mech, 2003
Xue et al., Eng Fract Mech, 2007
Xue et al., Acta Materialia, 2010
Finite Element Model – 2D

\[\mathbf{u}_{\text{app}} \]

Plane Strain

\[\gamma_{\text{max}} \]

Number of Elements

\[\times 10^5 \]
Average Maximum Plastic Shear Strain $\gamma_{max}^{P^*}$

$$\gamma_{max}^{P^*} = \frac{1}{A_\beta} \int_{A_\beta} \gamma_{max}^p \, dA$$

[Source: Xue et al., Eng. Fract. Mech., 2007]

$$A_\beta = 0.012D^2$$

[Source: Gall et al., Int J Fract, 2001]
\(p^* \) versus \(\varepsilon_{\alpha} \)
Finite Element Model – 3D

- Applied Displacement
- Fixed X
- Fixed Y
- Fixed Z
3D versus 2D

3D Model

2D Model
MSF Model

Incubation Cycles, N_{INC}:

$$\beta = \frac{\Delta \gamma_{max}^p}{2} = C_{INC} N_{INC}^\alpha$$

$N_{total} = N_{INC} + N_{SC} + N_{LC}$

![Graph showing relationship between incubation cycles and applied strain](image)

$\beta = 1.851 \epsilon_a + 4.028 \times 10^{-5}$
MSF Model

Incubation Cycles, N_{INC}:

$$N_{total} = N_{INC} + N_{SC} + N_{LC}$$

[Source: Torries et al., JOM, 2017]
Crack Propagation

- Crack propagation path determined using the eXtended Finite Element Method (XFEM)

\[u^h(x) = \sum_{I \in N} N_I(x) \left[u_I + H(x)a_I + \sum_{\alpha=1}^{4} F_{\alpha}b_{I}^{\alpha} \right] \]

- Initial crack: \(0.01D = 0.542 \, \mu m \)
- Propagation modeled using LEFM
- Kink angle determined using **Maximum tangential stress criterion**:

\[\hat{\theta} = \cos^{-1} \left(\frac{3K_{II}^2 + \sqrt{K_I^4 + 8K_I^2K_{II}^2}}{K_I^2 + 9K_{II}^2} \right) \]

[Source: Abaqus Theory Guide, v6.14, Section 2.16]

Crack Propagation

Applied Static Load
\(\varepsilon_{app} = 0.5\% \)

Linear Elastic Model
\(E = 215 \, MPa, \, \nu = 0.335 \)
MSF Model

Small Crack Growth Cycles, N_{SC}:

$$N_{total} = N_{INC} + N_{SC} + N_{LC}$$

Strain (mm/mm)

S, Mises (MPa) (Avg: 75%)
- 13000
- 12000
- 11000
- 10000
- 9000
- 8000
- 7000
- 6000
- 5000
- 4000
- 3000
- 2000
- 1000
- 0

CTOD

Multilinear E-Pl Model

Stress (MPa)

Crack Length (µm)

ΔCTOD (µm)

0.1% Strain
0.4% Strain
0.7% Strain
1.0% Strain
Larger discrepancy between MSF prediction and experimental data for larger strain amplitudes

⇒ Incubation life assumption
Conclusions & Future Work

Conclusions

▪ Fe-Co-2V Coffin-Manson parameters σ_f^\prime, b, ε_f^\prime, and c determined for the first time

▪ Micromechanical simulations were used to compute the nonlocal maximum plastic shear strain amplitude (β) and crack tip opening displacement (CTOD)

▪ A Multi-Stage Fatigue model was used to predict fatigue life with no parameter calibration

Future Work

▪ Upper and lower defect sizes to bound MSF model prediction

▪ Analysis of AM CT imagery

▪ More fatigue tests to populate strain-life curve
Acknowledgments

- This research was conducted at the 2018 Nonlinear Mechanics and Dynamics Research Institute hosted by Sandia National Laboratories and the University of New Mexico.

- Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.