Alternative Landfill Cover Demonstration, FY2000 Annual Data Report

Stephen F. Dwyer, Bruce Reavis, and Gretchen Newman

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.
Alternative Landfill Cover Demonstration, FY2000 Annual Data Report

Stephen F. Dwyer\(^1\) and Bruce Reavis\(^2\)
Environmental Restoration Technology Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0719

Gretchen Newman\(^3\)
GRAM Inc.
8500 Menual Blvd. NE
Albuquerque, NM 87112

ABSTRACT

A large-scale field demonstration comparing final landfill cover designs was constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional cover designs (a RCRA Subtitle ‘D’ Soil Cover and a RCRA Subtitle ‘C’ Compacted Clay Cover) were constructed side-by-side with four alternative landfill test covers designed for dry environments. The demonstration is intended to evaluate the different cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents a general overview of the data collected to date from the ongoing demonstration. Study conclusions are not presented in the report because data is still being collected and trends are still developing. The flux rates measured from May 1997 through June 2000 are as follows:

\(^1\) Principal Investigator
\(^2\) Distinguished Technologist
\(^3\) Senior Hydrologist
<table>
<thead>
<tr>
<th>Year</th>
<th>Subtitle D</th>
<th>GCL</th>
<th>Subtitle C</th>
<th>Capillary Barrier</th>
<th>Anisotropic Barrier</th>
<th>ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997 (May 1 - Dec 31)</td>
<td>10.62</td>
<td>1.51</td>
<td>0.12</td>
<td>1.62</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>1998</td>
<td>4.96</td>
<td>0.38</td>
<td>0.30</td>
<td>0.82</td>
<td>0.14</td>
<td>0.44</td>
</tr>
<tr>
<td>1999</td>
<td>3.12</td>
<td>4.31</td>
<td>0.04</td>
<td>0.85</td>
<td>0.28</td>
<td>0.01</td>
</tr>
<tr>
<td>2000 (Jan 1 - Jun 25)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Average</td>
<td>4.82</td>
<td>1.81</td>
<td>0.13</td>
<td>0.87</td>
<td>0.16</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Contents

Background --- 7
Introduction -- 7
Performance Monitoring and Instrumentation ------------------ 17
Results -- 23
Discussion --- 25
Expected Benefits --- 26
Acknowledgements -- 26
Literature Cited -- 27
APPENDIX A Precipitation Measured at the ALCD Site---------------- A-1
APPENDIX B Precipitation vs. Percolation----------------------- B-1
APPENDIX C Precipitation vs. Runoff-------------------------- C-1
APPENDIX D Precipitation vs. Soil Moisture------------------ D-1
APPENDIX E Precipitation vs. Evapotranspiration------------- E-1

Figures

Figure 1 Aeriel View of Alternative Landfill Cover Demonstration------------------ 8
Figure 2 Test Cover Layout-- 9
Figure 3 Profile of Baseline Test Cover 1 (Soil Cover)-------------------------------- 10
Figure 4 Profile of Baseline Test Cover 2 (Compacted Clay Cover)------------------- 10
Figure 5 Welding Seams of Geomembrane Panels-- 11
Figure 6 Profile of Alternative Test Cover 1 (GCL Cover)------------------------------ 12
Figure 7 GCL Installation--- 13
Figure 8 Profile of Alternative Test Cover 2 (Capillary Barrier)---------------------- 13
Figure 9 Capillary Barrier Installation--- 14
Figure 10 Profile of Alternative Test Cover 3 (Anisotropic Barrier)--------------------- 15
Figure 11 Profile of Alternative Cover 4 (ET Cover)------------------------------------ 15
Figure 12 Compacting Soil in ET Cover--- 16
Figure 13a TDR System Deployment-- 18
Figure 13b TDR Cable Tester and Data Logger-- 19
Figure 14 Surface Water Gutter Collection-- 20
Figure 15 Instrumentation Housed Inside Shelter-------------------------------------- 21
Figure 16 On-Site Weather Station-- 21
Figure 17a Vegetation Density Count--- 22
Figure 17b Vegetation Species Count--- 22
Figure A-1 Measured Precipitation at ALCD, May 1997 to June 2000---------------------- A-2
Figure A-2 Precipitation at ALCD Site--- A-3
Figure B-1 Precipitation Versus Percolation--- B-2
Figure B-2 1998 Precipitation Versus Percolation-- B-3
Figure B-3 1999 Precipitation Versus Percolation-- B-4
Figure B-4 2000 Precipitation Versus Percolation-- B-5
Figure C-1 1997 Precipitation Versus Runoff--- C-2
Figures (continued)

Figure C-2 1998 Precipitation Versus Runoff----------------------------- C-3
Figure C-3 1999 Precipitation Versus Runoff----------------------------- C-4
Figure C-4 2000 Precipitation Versus Runoff----------------------------- C-5
Figure D-1 1997 Precipitation Versus Soil Moisture Landfill 1------------------ D-2
Figure D-2 1997 Precipitation Versus Soil Moisture Landfill 2------------------ D-3
Figure D-3 1997 Precipitation Versus Soil Moisture Landfill 3------------------ D-4
Figure D-4 1997 Precipitation Versus Soil Moisture Landfill 4------------------ D-5
Figure D-5 1997 Precipitation Versus Soil Moisture Landfill 5------------------ D-6
Figure D-6 1997 Precipitation Versus Soil Moisture Landfill 6------------------ D-7
Figure D-7 1998 Precipitation Versus Soil Moisture Landfill 1------------------ D-8
Figure D-8 1998 Precipitation Versus Soil Moisture Landfill 2------------------ D-9
Figure D-9 1998 Precipitation Versus Soil Moisture Landfill 3------------------ D-10
Figure D-10 1998 Precipitation Versus Soil Moisture Landfill 4------------------ D-11
Figure D-11 1998 Precipitation Versus Soil Moisture Landfill 5------------------ D-12
Figure D-12 1998 Precipitation Versus Soil Moisture Landfill 6------------------ D-13
Figure D-13 1999 Precipitation Versus Soil Moisture Landfill 1------------------ D-14
Figure D-14 1999 Precipitation Versus Soil Moisture Landfill 2------------------ D-15
Figure D-15 1999 Precipitation Versus Soil Moisture Landfill 3------------------ D-16
Figure D-16 1999 Precipitation Versus Soil Moisture Landfill 4------------------ D-17
Figure D-17 1999 Precipitation Versus Soil Moisture Landfill 5------------------ D-18
Figure D-18 1999 Precipitation Versus Soil Moisture Landfill 6------------------ D-19
Figure D-19 2000 Precipitation Versus Soil Moisture Landfill 1------------------ D-20
Figure D-20 2000 Precipitation Versus Soil Moisture Landfill 2------------------ D-21
Figure D-21 2000 Precipitation Versus Soil Moisture Landfill 3------------------ D-22
Figure D-22 2000 Precipitation Versus Soil Moisture Landfill 4------------------ D-23
Figure D-23 2000 Precipitation Versus Soil Moisture Landfill 5------------------ D-24
Figure D-24 2000 Precipitation Versus Soil Moisture Landfill 6------------------ D-25
Figure E-1 1997 Precipitation Versus Evapotranspiration---------------------- E-2
Figure E-2 1998 Precipitation Versus Evapotranspiration---------------------- E-3
Figure E-3 1999 Precipitation Versus Evapotranspiration---------------------- E-4
Figure E-4 2000 Precipitation Versus Evapotranspiration---------------------- E-5

Tables

Table 1 Seed Mix for Test Covers -- 16
Table 2 Measured Precipitation Values at the ALCD Site--------------------- 23
Table 3 Measured Percolation Values of Test Covers at the ALCD Site-------- 23
Table 4 Flux Rate Values of Test Covers at the ALCD Site------------------ 24
Table 5 Efficiency Values of Test Covers at the ALCD Site------------------ 24
BACKGROUND

The US Department of Energy (DOE) is in the midst of a major clean-up effort of their facilities that is expected to cost billions of dollars. These cost estimates however are based on cleanup technologies currently used by DOE. Research has shown that many of these technologies have proven to be inadequate (Mulder and Haven 1995). Consequently, work has begun on the development and improvement of current environmental restoration and management technologies. One particular area under study is landfill cover performance. As part of their ongoing environmental restoration activities, the DOE has many radioactive, hazardous, mixed waste, and sanitary landfills to be closed in the near future (Hakonson, 1994). These sites, as well as mine and mill tailings piles and surface impoundments, all require either remediation to a ‘clean site’ status or capping with an engineered cover upon closure. Additionally, engineered covers are being considered as an interim measure to be placed on contaminated sites until they can be remediated.

The Alternative Landfill Cover Demonstration (ALCD) is a large-scale field test at Sandia National Laboratories located on Kirtland Air Force Base in Albuquerque, New Mexico (Figure 1). The project’s intent is to compare and document the performance of alternative landfill cover technologies of various costs and complexities for interim stabilization and/or final closure of landfills in arid and semi-arid environments. The test covers are constructed side-by-side for comparison based on their performance, cost, and ease of construction. The ALCD is not intended to showcase any one particular cover system. The focus of this project is to provide the necessary tools; i.e., cost, construction and performance data, to the public and regulatory agencies so that design engineers can have less expensive, regulatory acceptable alternatives to the conventional cover designs.

INTRODUCTION

The ALCD landfill covers were divided into two separate bid packages known as Phase I and Phase II. The Phase I covers, constructed in the summer of 1995, include a prescriptive RCRA Subtitle ‘D’ Soil Cover, a prescriptive RCRA Subtitle ‘C’ Compacted Clay Cover, and the first of four alternative covers - a Geosynthetic Clay Liner (GCL) Cover. The RCRA Soil and Compacted Clay Covers were constructed to serve as baselines for comparison against the alternative cover designs. The Phase II covers, built in the summer of 1996, include the Capillary Barrier, Anisotropic Barrier, and Evapotranspiration (ET) Cover. Each phase of construction was competitively bid with the low bidder receiving a firm fixed price contract.
The test covers are each 13 m wide by 100 m long. The 100 m dimension was chosen because it is representative of many hazardous and mixed waste landfills found throughout the DOE complex (approximately 2 acres in surface area). All covers were constructed with a 5% slope in all layers. The slope lengths are 50 m each (100 m length crowned at the middle with half of the length, 50 m, sloping to the east and the other 50 m sloping toward the west). The western slope component of the covers are monitored under ambient conditions (passive monitoring). A sprinkler system was installed in each of the eastern slope components to facilitate stress testing (active monitoring) of the covers (Figure 2).

Continuous water balance and meteorological data is being obtained at the project site. Data obtained to date is presented in the results section of this paper. These data will be actively collected for a minimum five-year post construction period. In addition, periodic measurements of vegetation cover, biomass, leaf area index, and species composition are being collected from each landfill cover (Wolters et al. 2000).
The project test covers are described below.

Baseline Test Covers

Baseline Test Cover 1 (Landfill 1) is a basic Soil Cover installed to meet minimum requirements for RCRA Subtitle ‘D’ governed landfills per 40CFR258. These requirements apply to municipal solid waste landfills (MSWL) to be closed using engineered covers and are designed with intent to meet the following performance objectives:

1. cover permeability less than or equal to the permeability of the bottom liner/subsoil or no greater than 10^{-5} cm/sec;
2. minimize infiltration using no less than 45 cm of soil; and
3. minimize erosion using no less than 15 cm of topsoil for plant growth.

The installed test cover is 60 cm thick (Figure 3). It is constructed of two principal layers. The top vegetation layer is 15 cm of loosely laid topsoil. The bottom layer is a 45 cm thick compacted soil barrier layer.
Baseline Test Cover 2 (Landfill 3) is a Compacted Clay Cover designed and constructed in accordance with minimum regulatory requirements for closure of hazardous and mixed waste landfills found in 40 CFR Parts 264 and 265. These regulations are somewhat vague. They are not as specific about the details of a cover profile as those for 40CFR258. To overcome this vagueness, the EPA recommended a cover profile for the RCRA Subtitle ‘C’ final cover design profile (EPA 1991) described below from bottom to top:

1. A composite barrier layer consisting of a minimum 60-cm thick layer of compacted natural or amended soil with a maximum saturated hydraulic conductivity of 1×10^{-7} cm/sec in intimate contact with a minimum 40-mil geomembrane overlying this soil layer;
2. A drainage layer consisting of a minimum 30-cm thick sand layer having a minimum saturated hydraulic conductivity of 1×10^{-2} cm/sec, or a layer of geosynthetic material having the same characteristics;
3. A top vegetation/soil layer consisting of a minimum 60-cm of soil graded at a slope between 3 and 5 percent with vegetation or an armored top surface.

The installed Compacted Clay Cover is 1.5 m thick which basically matches the recommended EPA design described above. The profile for this cover consists of three layers (Figure 4).

RCRA Subtitle ‘C’ Compacted Clay Cover Cover

Figure 3. Profile of Baseline Test Cover 1 (Soil Cover)

Figure 4. Profile of Baseline Test Cover 2 (Compacted Clay Cover)
The bottom layer is a 60 cm thick compacted soil barrier layer. The native soil required amendment to meet the saturated hydraulic conductivity requirement (maximum of 1×10^{-7} cm/sec) for this barrier layer. Laboratory tests determined that a mixture of 6% by weight of sodium bentonite with the native soil compacted ‘wet of optimum’ to a minimum of 98% of maximum dry density per ASTM D698 would be adequate.

A 40 mil linear low density polyethylene (LLDPE) geomembrane was placed directly on the compacted soil barrier layer to create a composite barrier layer (Figure 5). The purpose of this composite barrier layer is to create an impermeable barrier that blocks the infiltration of water. Eight 1-cm2 defects (puncture holes) were purposely and randomly placed in this geomembrane to be representative of a geomembrane installation with average quality control conditions (Dwyer et al. 1998).

![Figure 5. Welding Seams of Geomembrane Panels](image)

The cover’s middle layer is a 30 cm thick drainage layer. The purpose of the drainage layer is to minimize the time any infiltrated water is in contact with the underlying barrier layer by quickly routing water that has passed through the vegetation layer laterally to collection drains. This layer was constructed of sand placed directly on the geomembrane.

The top layer is a 60 cm thick vegetation layer composed of uncompacted soil. This layer’s primary purpose is to provide a medium for vegetation growth, erosion protection, and to protect the underlying layers from freeze/thaw cycles. The vegetative layer allows for storage of infiltrated water that can be removed by evaporation and/or transpired by vegetation.
Alternative Test Covers

All soil used in the construction of the alternative test landfill covers came from on-site cut excavations. Other materials purchased off-site, such as sand and gravel, were common construction materials and readily available (i.e., no exotic grain-size distributions, etc.).

Any and all compaction of soil required by design in the alternative covers was compacted ‘dry of optimum’ rather than ‘wet of optimum’ as currently recommended by the EPA for the baseline covers (EPA 1991). Dry-side compaction should result in a compacted barrier soil that is less susceptible to desiccation cracking. Dry-side compaction also made construction easier and therefore less expensive and should provide more soil water storage capability than wet-side storage due to the lower initial degree of saturation.

Alternative Test Cover 1 (Landfill 2) is a Geosynthetic Clay Liner (GCL) Cover (Figure 6) identical to the traditional Compacted Clay Cover, with the exception that the expensive (Dwyer 1998) and problematic (Dwyer 2000) clay barrier layer was replaced with a manufactured sheet known as a GCL installed in its place. All other aspects of the cover were identical to those in Baseline Test Cover 2. The overall thickness of this cover as-built was 90 cm. The cover’s component layers from bottom to top is the barrier layer (the GCL membrane covered with a geomembrane that comprises the composite barrier layer), 30 cm sand drainage layer, geotextile filter fabric, and 60 cm vegetation soil layer, respectively. The installed geomembrane also had eight 1-cm² randomly placed defects in it similar to those inflicted on the Compacted Clay Cover’s geomembrane.

The GCL installed is a product manufactured by Claymax. It consists of two non-woven fabrics that sandwich a thin layer of bentonite (Figure 7). The delivered-saturated hydraulic conductivity of the GCL per the manufacturer (Claymax 1995) was specified as 5×10^{-9} cm/sec.
Alternative Test Cover 2 (Landfill 4) is a Capillary Barrier. This cover system consists of four primary layers from bottom to top: (1) a lower drainage layer; (2) a barrier soil layer; (3) an upper drainage layer; and (4) a topsoil layer (Figure 8). The barrier soil layer and lower drainage layer comprise the capillary barrier. The lower drainage layer is composed of 30 cm of washed concrete sand.
The 45 cm barrier soil layer was installed directly on the sand (Figure 9). The upper drainage layers were placed over the barrier soil layer. This upper drainage layer consists of two materials containing 22 cm of clean pea gravel and 15 cm of washed concrete sand. Finally, a 30 cm thick layer of topsoil was placed on the sand.

Alternative Test Cover 3 (Landfill 5) is another capillary barrier system referred to as the Anisotropic Barrier that is designed to limit the downward movement of water while encouraging the lateral movement of water. This cover is composed of a layering of capillary barriers.

The cover system contains four layers: (1) a top vegetation layer; (2) a cover soil layer; (3) an interface layer; and (4) a sublayer (Figure 10). The vegetation layer is 15 cm thick. It is comprised of a mixture of local topsoil and pea-gravel. The gravel to soil mixture ratio by weight was 0.25 (25%). The gravel was added to assist in minimizing surface erosion due to surface runoff. This layer encourages evapotranspiration, allows for vegetation growth, and reduced surface erosion. The cover native soil layer is 60 cm thick. Its function is to allow for water storage and eventual evapotranspiration and to serve as a rooting medium. The interface layer is 15 cm of fine sand that serves as a filter between the overlying soil and the underlying gravel, and serves as a drainage layer to laterally divert water to collection areas that has percolated through the cover soil. The sublayer is 15 cm of pea-gravel. The native soil overlying the sand layer create one capillary barrier while the sand overlying the pea gravel creates a second capillary break.
Anisotropic Barrier

Figure 10. Profile of Alternative Test Cover 3 (Anisotropic Barrier)

Alternative Test Cover 4 (Landfill 6) is referred to as an Evapotranspiration (ET) Cover (Figure 11). The ET Cover consists of a single, vegetated soil layer constructed to represent an optimum mix of soil texture, soil thickness, and vegetation cover.

The installed test cover is a 105 cm thick monolithic soil cover. The bottom 90 cm of native soil was compacted while the top 15 cm of topsoil was loosely placed. The soil allows for water storage, which combined with the vegetation, is designed to optimize evapotranspiration.

Evapotranspiration Soil Cover

Figure 11. Profile of Alternative Cover 4 (ET Cover)
A thin gravel veneer (2 to 4 cm) was placed on the surface after the cover was seeded. The objective of the gravel veneer was to enhance the vegetation establishment and minimize erosion.

![Figure 12. Compacting Soil in ET Cover](image)

After the covers were constructed, they were drill-seeded with native rangeland vegetation. The seed mix (Table 1) was chosen based on an acceptable native vegetation that would provide an adequate coverage during both warm and cool growing seasons.

Table 1. Seed Mix for Test Covers

<table>
<thead>
<tr>
<th>Desired Establishment (%) of total vegetation</th>
<th>Quantity in Mixture (lbs./acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm Season Grasses:</td>
<td></td>
</tr>
<tr>
<td>Bouteloua gracilis (Blue Grama)</td>
<td>20</td>
</tr>
<tr>
<td>Hilaria jamesii (Galleta)</td>
<td>10</td>
</tr>
<tr>
<td>Sporabolis cyptandrus (Sand Dropseed)</td>
<td>50</td>
</tr>
<tr>
<td>Cool Season Grasses:</td>
<td></td>
</tr>
<tr>
<td>Oryzopsis hymenoides (Indian Ricegrass)</td>
<td>10</td>
</tr>
<tr>
<td>Stipa comata (Needle & Thread)</td>
<td>10</td>
</tr>
</tbody>
</table>

(1) Approximate percentage of total species present in number of plants per given area.

(2) Note that differences in weight among the various species can result in large differences in the mass ratio (lbs/acre) of seed required in the seed mixture.
PERFORMANCE MONITORING AND INSTRUMENTATION

Passive testing consists of daily on-site observations to validate system performance and to correct problems as they potentially develop. Continuous data is being obtained on soil moisture status, percolation and interflow, runoff and erosion, precipitation, wind speed and direction, relative humidity, solar radiation, air and soil temperatures. Periodic measurements on vegetation cover, biomass, leaf area index, and species composition are also obtained (Wolters et al. 2000).

Active testing includes the addition of supplemental precipitation to hydrologically stress the different cover systems. Water applied using the sprinkler system is tested for rate and uniformity of application. All water is distributed through electronically controlled flowmeters where quantities discharged are controlled and measured. This system has the capability to apply water quantities that simulate worst case precipitation events. All other measurements under this precipitation regime are the same as those described above for passive monitoring.

The water balance equation being used is:

\[E = P - I - R - D - \Delta S; \]

where: precipitation plus applied water if any (P), surface runoff (R), lateral drainage (D), evapotranspiration (E), soil water storage (S), and percolation or infiltration (I) are the six water balance variables. With the exception of ‘E’, quantities for all other variables in the water balance equation are being obtained with the monitoring systems. Evapotranspiration is then determined by solving the water balance equation for ‘E’. All measurements are made with automated monitoring systems to provide continuous data (Dwyer et al. 1998). Manual backup systems are available for use in case of failure in one or more of the automated measurements systems and/or to verify accuracy of the automated systems.

Soil Moisture: Time Domain Reflectometry (TDR) and an associated data acquisition system (Figure 13 b) is used to provide a continuous record of soil moisture status at various plan locations and depths within each cover profile (Figure 13a). Each TDR probe was individually calibrated to achieve the highest degree of accuracy possible (Lopez et al. 1997). PVC pipes were installed strategically in the covers to be used as ports to allow for the use of frequency domain reflectometry as a backup.
Figure 13a. TDR System Deployment
Figure 13b. TDR Cable Tester and Data Logger

Runoff and Erosion: Runoff and erosion are measured on an event basis. Surface runoff water is collected with a gutter system located at the bottom of each slope component of each cover (Figure 14). The collected water is routed to instrumentation that quantifies the amount and a data acquisition system is linked to the instrumentation to automatically record and store the data.
Percolation and Interflow: Subsurface flows are measured. Lateral drainage from each drainage layer (GCL Cover and RCRA Subtitle ‘C’ Compacted Clay Cover) is collected using underdrain systems placed at the bottom of each slope component of each cover. The water is routed to instrumentation that quantifies it. The instrumentation is linked to a data acquisition system to continuously record flow events. Percolation through the barrier layer within each cover is collected using a geomembrane under a geonet that routes the water to an underdrain collection system. Both percolation and interflow is routed via drains to the flow monitoring system. Measurement redundancy is built into the system to reduce the probability of losing data because of equipment failure or power loss and to verify correctness of results obtained. All monitoring instrumentation is housed in a shelter (Figure 15).
Meteorology: A complete weather station (Figure 16) was installed at the ALCD site. Precipitation, air temperature, wind speed and direction, relative humidity, and solar radiation are continuously recorded. The meteorological measurements are made with automated equipment coupled to the data acquisition system.

Vegetation: Attributes of the vegetation on each landfill cover (Wolters et al. 2000) are measured yearly to relate vegetation characteristics to potential changes in erosion and evapotranspiration. Several point frames are used to evaluate total cover, species count and vegetation biomass (Figure 17 a and b). Biomass production is determined by clipping and weighing oven-dried
samples collected from subplots within each landfill cover. Species composition is measured using line transects staked within each landfill subplot.

Figure 17a. Vegetation Density Count

Figure 17b. Vegetation Species Count
RESULTS

The data presented in this report is that measured at the ALCD site from May 1997 through June 2000. This data is presented without conclusions because data is still being collected and trends are still being developed. This demonstration is a long-term demonstration (minimum five years post construction) and it would be premature to draw conclusions at this time with a minimum of two more years of monitoring to be completed. Conclusions will be presented in a final report of the ALCD project findings at the conclusion of the study, currently estimated as September 30, 2002.

The measured percolation and precipitation data collected to date is presented below in tabular format. The first year of monitoring (1997) was a relatively wet year. The precipitation values listed in Table 2 include the periods May through Dec of 1997 and January through June of 2000 as well as all of 1998 and 1999. The last two years (1999 and 2000) have been extremely dry years. The precipitation values are also presented in graphical format in Appendix A.

Table 2. Measured Precipitation Values at the ALCD Site

<table>
<thead>
<tr>
<th>Year</th>
<th>Volume (liters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997 (May 1 - Dec 31)</td>
<td>154,585</td>
</tr>
<tr>
<td>1998</td>
<td>169,048</td>
</tr>
<tr>
<td>1999</td>
<td>130,400</td>
</tr>
<tr>
<td>2000 (Jan 1 - Jun 25)</td>
<td>28,151</td>
</tr>
</tbody>
</table>

The measured percolation values for each landfill test cover are presented in Table 3. Again, measurements for 1997 are for May through December and measurements for 2000 are for January through June only. The percolation data was converted into a respective flux rate (mm/year) for each cover (Table 4). Percolation vs. precipitation is also graphically presented in Appendix B.

Table 3. Measured Percolation Values of Test Covers at the ALCD Site

<table>
<thead>
<tr>
<th>Year</th>
<th>Percolation Totals (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subtitle D</td>
</tr>
<tr>
<td>1997 (May 1 - Dec 31)</td>
<td>3974</td>
</tr>
<tr>
<td>1998</td>
<td>2764</td>
</tr>
<tr>
<td>1999</td>
<td>1740</td>
</tr>
<tr>
<td>2000 (Jan 1 - Jun 25)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>8478</td>
</tr>
</tbody>
</table>
Table 4. Flux Rate Values of Test Covers at the ALCD Site

<table>
<thead>
<tr>
<th>Year</th>
<th>Subtitle D</th>
<th>GCL</th>
<th>Subtitle C</th>
<th>Capillary Barrier</th>
<th>Anisotropic Barrier</th>
<th>ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997 (May 1 - Dec 31)</td>
<td>10.62</td>
<td>1.51</td>
<td>0.12</td>
<td>1.62</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>1998</td>
<td>4.96</td>
<td>0.38</td>
<td>0.30</td>
<td>0.82</td>
<td>0.14</td>
<td>0.44</td>
</tr>
<tr>
<td>1999</td>
<td>3.12</td>
<td>4.31</td>
<td>0.04</td>
<td>0.85</td>
<td>0.28</td>
<td>0.01</td>
</tr>
<tr>
<td>2000 (Jan 1 - Jun 25)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Average</td>
<td>4.82</td>
<td>1.81</td>
<td>0.13</td>
<td>0.87</td>
<td>0.16</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Estimates of each cover efficiency for each cover are listed in Table 5. In essence, the efficiency value quantifies how “efficient” the covers prevent precipitation moisture from infiltrating into the underlying waste.

Table 5. Efficiency Values of Test Covers at the ALCD Site

<table>
<thead>
<tr>
<th>Year</th>
<th>Subtitle D</th>
<th>GCL</th>
<th>Subtitle C</th>
<th>Capillary Barrier</th>
<th>Anisotropic Barrier</th>
<th>ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>100.000</td>
<td>100.000</td>
<td>100.000</td>
<td>100.000</td>
<td>100.000</td>
<td>100.000</td>
</tr>
<tr>
<td>Average</td>
<td>98.6149</td>
<td>99.4173</td>
<td>99.9638</td>
<td>99.7440</td>
<td>99.9496</td>
<td>99.9492</td>
</tr>
</tbody>
</table>

The presentation of past data from the ALCD has generally centered on the test covers measured percolation. A stakeholder has specifically requested that all water balance data measured with respect to the ET Cover be presented in this report. This request has been granted. Consequently, all water balance data measured on the ET Cover, as well as similar data on all covers, is included. Water balance data collected on the ET Cover include percolation, surface runoff, and soil moisture. There is no drainage layer in the ET Cover therefore the lateral drainage parameter does not exist for this cover. Bear in mind that the vegetation on the covers built during Phase I was established one year earlier that the vegetation on the covers built during Phase II. Slight variations in surface runoff and soil moisture can be noticed due to the differences in vegetation growth on the covers pertaining to the two phases, as well as the different surface treatments associated with these covers. In general, however, the data collected to date is good and clearly reveals the differences in water balance activity within the six landfill covers. Surface runoff versus precipitation is graphically presented in Appendix C. Soil Moisture versus precipitation is graphically presented in Appendix D. Finally, ET versus precipitation for the six covers is graphically presented in Appendix E.
DISCUSSION

Without regulatory and public acceptance, promising environmental technologies have little chance for successful implementation. Also very important to the acceptance of new environmental technologies are their costs. A study performed by the University of North Dakota (Wentz 1989) concluded that the deciding factors affecting which hazardous waste management technology should be used for a particular site included from most important to least important: 1) government regulations, 2) economics, 3) public relations, and 4) process/technology. The ALCD project has been committed from the start towards regulatory and public acceptance of the project and the technologies presented in the demonstration. Furthermore, the design criteria for the alternative cover designs required that the new designs be less expensive to construct than the traditional designs.

Because permits can be difficult to obtain and there has been only minimal work conducted to promote alternative covers based on regional environmental requirements, many design engineers are reluctant to deviate far from conventional designs.

The project’s test cover designs were initially sent out for review first by a group of technical peers who were independent of the project and deemed industry experts. This review helped ensure the technical validity of the proposed cover designs and associated data acquisition system. Comments were gathered from the reviewers and incorporated into the cover and test designs.

The revised test plan was then sent to regulatory representatives from environmental departments throughout most of the western states. The test plan was also sent out to representatives from several EPA regional offices and comments from this review were also incorporated into the design package.

Lawmakers and regulators have become more sensitive to special interest group concerns and are consequently encouraging the inclusion of these groups in the permitting process. The ALCD has received the endorsement of a committee from a western states’ and federal government initiative to accelerate and improve cleanup of federal lands. This initiative originated in 1992, when the Western Governors Association, the Secretaries of Defense, Energy, and Interior, and the Administration of the Environmental Protection Agency formed a federal advisory committee to cooperate on the cleanup of federal waste management sites in the region. This committee, known as the Committee to Develop On-Site Innovative Technologies (DOIT Committee), has sought the guidance of key players to help identify, test, and evaluate more cooperative approaches to deploying promising innovative waste remediation and management technologies in order to clean up federal waste sites in an expeditious and cost-effective manner.

The DOIT Committee’s primary goal with regard to the ALCD is to 1) assist with the eventual acceptance of new technologies that come from the demonstration and 2) inclusion of landfill permitting in an interstate reciprocity program the Committee is attempting to finalize.

Finally, another review process included sending out a general overview of the demonstration to members of the DOIT Committee as well as special interest groups identified by the DOIT
Committee. These special interest groups included representatives from the Sierra Club, Indian tribes, government agencies, neighborhood associations, local businesses, engineering firms, and politicians. Over 1000 groups received the information. Reply comments were forwarded through the Western Governors Association for consideration. The majority of these comments centered on questions rather than comments and on praise for getting them involved early in the process. Periodic progress meetings were held with representatives of some of the special interest groups, Western Governors Association, regulatory agencies, New Mexico State Legislature, and Sandia National Laboratories.

EXPECTED BENEFITS

The ALCD project is expected to provide performance and cost data for landfill cover components and systems that are more applicable to western climatic conditions than currently recommended prescriptive designs. A direct comparison between conventional and alternative designs will be available. The "active" testing activities will permit data to be collected under extreme and accelerated conditions. This information will allow those responsible for the development of landfill cover design guidance to have a defensible basis for the transition from designs suited for the eastern United States to those more suited to the western United States.

The probable outcome of this demonstration is the acceptance of alternative cover designs that are significantly less costly, but more effective than conventional designs. Given the thousands of acres of buried waste sites to be covered, the payoff from this demonstration may be savings on the order of billions of dollars to taxpayers.

ACKNOWLEDGMENTS

The work is supported by the United States Department of Energy Office of Science and Technology Development through the Characterization, Monitoring, and Sensor Technology and Subsurface Contaminants Focus Areas.
LITERATURE CITED

Appendix A

Precipitation Measured at the ALCD Site
Figure A-1. Measured Precipitation at ALCD, May 1997 to June 2000
Figure A-2. Precipitation at ALCD Site
Appendix B

Precipitation Versus Percolation
Figure B-1. 1997 Precipitation Versus Percolation
Figure B-2. 1998 Precipitation Versus Percolation
Figure B-3. 1999 Precipitation Versus Percolation

<table>
<thead>
<tr>
<th>Month</th>
<th>Precip</th>
<th>Perc LF1</th>
<th>Perc LF2</th>
<th>Perc LF3</th>
<th>Perc LF4</th>
<th>Perc LF5</th>
<th>Perc LF6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>3681</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Feb</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mar</td>
<td>18264</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Apr</td>
<td>6088</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>May</td>
<td>8212</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Jun</td>
<td>29734</td>
<td>646.1</td>
<td>53.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Jul</td>
<td>36812</td>
<td>48.2</td>
<td>1447.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Aug</td>
<td>11327</td>
<td>1046.0</td>
<td>265.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sep</td>
<td>0</td>
<td>0.0</td>
<td>634.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Oct</td>
<td>1133</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nov</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Dec</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Figure B-4. 2000 Precipitation Versus Percolation
Appendix C

Precipitation Versus Runoff

<table>
<thead>
<tr>
<th>Precip</th>
<th>Perc LF1</th>
<th>Perc LF2</th>
<th>Perc LF3</th>
<th>Perc LF4</th>
<th>Perc LF5</th>
<th>Perc LF6</th>
</tr>
</thead>
</table>

Figure C-1. 1997 Precipitation Versus Runoff
Figure C-2. 1998 Precipitation Versus Runoff
Figure C-3. 1999 Precipitation Versus Runoff
Figure C-4. 2000 Precipitation Versus Runoff
Appendix D

Precipitation Versus Soil Moisture
Figure D-2. 1997 Precipitation Versus Soil Moisture Landfill 2
Figure D-3. 1997 Precipitation Versus Soil Moisture Landfill 3
Figure D-4. 1997 Precipitation Versus Soil Moisture Landfill 4
Figure D-5. 1997 Precipitation Versus Soil Moisture Landfill 5
1997 Precipitation Versus Soil Moisture Landfill 6

Figure D-6. 1997 Precipitation Versus Soil Moisture Landfill 6
Figure D-7. 1998 Precipitation Versus Soil Moisture Landfill 1
1999 Precipitation Versus Soil Moisture Landfill 2

Figure D-8. 1998 Precipitation Versus Soil Moisture Landfill 2
Figure D-9. 1998 Precipitation Versus Soil Moisture Landfill 3
Figure D-10. 1998 Precipitation Versus Soil Moisture Landfill 4
Figure D-11. 1998 Precipitation Versus Soil Moisture Landfill 5
Figure D-12. 1998 Precipitation Versus Soil Moisture Landfill 6
Figure D-13. 1999 Precipitation Versus Soil Moisture Landfill 1
Figure D-14. 1999 Precipitation Versus Soil Moisture Landfill 2
Figure D-15. 1999 Precipitation Versus Soil Moisture Landfill 3
Figure D-16. 1999 Precipitation Versus Soil Moisture Landfill 4
Figure D-17. 1999 Precipitation Versus Soil Moisture Landfill 5
Figure D-18. 1999 Precipitation Versus Soil Moisture Landfill 6
2000 Precipitation Versus Soil Moisture Landfill 1

Figure D-19. 2000 Precipitation Versus Soil Moisture Landfill 1
Figure D-20. 2000 Precipitation Versus Soil Moisture Landfill 2
Figure D-21. 2000 Precipitation Versus Soil Moisture Landfill 3
Figure D-22. 2000 Precipitation Versus Soil Moisture Landfill 4
Figure D-23. 2000 Precipitation Versus Soil Moisture Landfill 5
Figure D-24. 2000 Precipitation Versus Soil Moisture Landfill 6
Appendix E

Precipitation Versus Evapotranspiration

<table>
<thead>
<tr>
<th></th>
<th>Precip</th>
<th>Perc LF1</th>
<th>Perc LF2</th>
<th>Perc LF3</th>
<th>Perc LF4</th>
<th>Perc LF5</th>
<th>Perc LF6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure E-1. 1997 Precipitation Versus Evapotranspiration
Figure E-2. 1998 Precipitation Versus Evapotranspiration
Figure E-3. 1999 Precipitation Versus Evapotranspiration
Figure E-4 2000 Precipitation Versus Evapotranspiration
DISTRIBUTION

1 Advanced Earth Sciences, Inc.
 Attn: Suji Somasundaram, Ph.D.
 13700 Alton Parkway
 Suite 163
 Irvine, CA 92718

1 Advanced Integrated Management Services, Inc.
 Attn: Tom Anderson
 P.O. Box 928
 Golden, CO 80402-0928

1 AGRA Earth & Environmental, Inc.
 Attn: John C. Lommler, Ph.D.
 4700 Lincoln Rd. N.E.
 Albuquerque, NM 87109

1 Arizona Department of Environmental Quality
 Attn: Julie Linn
 3033 North Central Ave.
 M0701C
 Phoenix, AZ 85012-2809

1 Arizona Department of Environmental Quality
 Attn: James A. Walters
 3033 North Central Ave.
 Phoenix, AZ 85012

1 Arizona State University
 Engineering & Applied Sciences
 Attn: Kenneth D. Walsh, Ph.D., P.E.
 P.O. Box 870204
 Tempe, AZ 85287-0204

1 Battelle
 Attn: Larry Smith
 Rm 10-1-34B
 505 King Ave.
 Columbus, OH 43201

1 Bechtel Nevada
 Attn: Stuart E. Rawlinson
 2621 Losee Rd.
 North Las Vegas, NV 89030-4134

1 Bureau of Economic Geology
 Attn: Bridget R. Scanlon, Ph.D.
 University Station, Box X
 Austin, TX 78713-8924

1 Bureau of Land Management
 Attn: Brent Lewis
 Denver Service Center
 Building 50
 Denver, CO 80225

1 Bureau of Land Management
 Attn: Mike Moran
 U.S. Department of Interior
 Las Vegas Field Office
 4765 Vegas Drive
 Las Vegas, NV 89108

1 Bureau of Land Management
 Attn: Stephanie Odell
 Farmington District Office
 1235 La Plata Highway
 Farmington, NM 87401

1 California Regional Water Quality Control Board
 Attn: Ron Hobcomb
 Central Valley Region
 3614 East Ashlan Ave.
 Fresno, CA 93726

1 Camp Dresser & McKee Inc.
 Attn: John (Yash) P. Nyznyk, P.E.
 One Walnut Creek Center, Suite 300
 100 Pringle Ave.
 Walnut Creek, CA 94596

1 Clark County Health District
 Attn: Victor B. Skaar
 625 Shadow Lane
 Las Vegas, NV 89127

1 Colloid Environmental Technologies Company
 Attn: Bradford H. Miller
 1350 West Shure Drive
 Arlington Heights, IL 60004-1440

1 Colloid Environmental Technologies Company
 Attn: James T. Olsta
 1350 West Shure Drive
 Arlington Heights, IL 60004-1440

1 Daniel B. Stephens & Associates, Inc.
 Attn: Mark D. Ankeny, Ph.D.
 Hydrologic Testing Laboratory
 6020 Academy NE
 Suite 100
 Albuquerque, NM 87109
1	Daniel B. Stephens & Associates, Inc.	Attn: Larry M. Coons
	6020 Academy NE	
	Suite 100	
	Albuquerque, NM 87109	

1	Design Solutions, Ltd.	Attn: Terry L. Leach
	4401 Silver S.E.	
	Suite A	
	Albuquerque, NM 87108	

1	Duke Engineering	Attn: Cindy Ardito
	1650 University Blvd. N.E.	
	Albuquerque, NM 87102	

1	Duke Engineering	Attn: Jim Studer
	1650 University Blvd. N.E.	
	Albuquerque, NM 87102	

1	EIS Environmental Engineers, Inc.	Attn: Wanada Baxter-Potter
	1701 N. Ironwood Dr.	
	South Bend, IN 46635	

1	Engineering Solutions & Design	Attn: Jack P. Chappelle
	3916 Juan Tabo Blvd. NE	
	Albuquerque, NM 87111	

1	Envirosource Technologies	Attn: Gary M. Bulik
	1155 Business Center Drive	
	Horsham, PA 19044-3454	

1	Environmental Health Department	Environmental Services Division
	Attn: Marcia A. Pincus, P.E.	
	P.O. Box 1293	
	Albuquerque, NM 87103	

1	Exxon Biomedical Sciences, Inc.	Attn: James H. Higinbotham
	Mettlers Rd.	
	CN 2350	
	East Millstone, NJ 08875-2350	

1	Exxon Research and Engineering	Attn: Kris Jimenez
	180 Park Ave.	
	Florham Park, NJ 07932	

1	FERMCO	Attn: Larry Stebbins
	MS: 81-2	
	P.O. Box 538704	
	Cincinnati, OH 45235	

1	Fluor Daniel Fernald	Attn: Uday A. Kumthekar, P.E., C.C.S.
	7400 Willey Road	
	Fernald, OH 45013-9402	

1	Fluor Daniel, Inc.	Attn: Lawrence J. Olguin
	1726 Cole Blvd.	
	Suite 150	
	Golden, CO 80401	

1	Foamseal Urethane Technology	Attn: Timothy P. Walsh
	P.O. Box 455	
	2425 N. Lapeer Rd.	
	Oxford, MI 48371	

1	Foster Wheeler Environmental Corporation	Attn: John M. Teel
	6605 Uptown Blvd., N.E.	
	Suite 220	
	Albuquerque, NM 87110	

1	Gannett Fleming, Inc.	Attn: George H. Barstar
	650 Park Avenue	
	Suite 100	
	King of Prussia, PA 19406	

1	Geologic Associates	Attn: Horacio Ferriz
	426 14th Street	
	Modesto, CA 95354	

1	Geologic Associates	Attn: Gary L. Lass
	1360 Valley Vista Dr.	
	Suite 100	
	Diamond Bar, CA 91765	

1	GeoSyntec Consultants	Attn: Jack A. Caldwell, P.E.
	2100 Main Street	
	Suite 150	
	Huntington Beach, CA 92648	

1	GeoSyntec Consultants	Attn: Miles Khire
	621 N.W. 53rd Street, Suite 650	
	Boca Raton, FL 33487	
1 Grand County Solid Waste Management
Special Service District #1
Attn: Anthony E. Martineau
1000 E. Sand Flats Rd.
P.O. Box 980
Moab, UT 84532

1 Gundle Lining Systems, Inc.
Attn: Walter Steinbeck
19103 Gundle Rd.
Houston, TX 77073

1 HDR Engineering, Inc.
Attn: Terry Warner
3995 South 700 East
Suite 100
Salt Lake City, UT 84107

1 HP Environmental Services, LLC
Attn: Jeff Langan
4304 East 60th Avenue
P.O. Box 1156
Commerce City, CO 80022

1 HSI Geotrans
Attn: James R. Erickson
4888 Pearl East Circle
Suite 300E
Boulder, CO 80301

1 HSI Geotrans
Attn: Martin W. Kosec
4888 Pearl East Circle
Suite 300E
Boulder, CO 80301

1 Idaho Division of Environmental Quality
Attn: Brian Gaber
1410 N. Hilton
Boise, ID 83706-1255

1 Idaho National Engineering &
Environmental Lab
Attn: Wayne Downs
P.O. Box 1625
Idaho Falls, ID 83415

1 Idaho National Engineering &
Environmental Lab
Attn: Kevin Kostelnick
Lockheed Martin Idaho Technologies
P.O. Box 1625
Idaho Falls, ID 83415

1 The IT Group
EMCON/OWT Solid Waste Services
Attn: Richard D. Haughey, PE
1921 Ringwood Avenue
San Jose, CA 95131

1 The IT Group
EMCON/OWT Solid Waste Services
Attn: Kevin D. Yard, P.E.
5701 East Loop 820 South
Fort Worth, TX 76119-7051

1 Judson Ford, Jr. Associates
Attn: Judson Ford Jr.
P.O. Box 80267
Albuquerque, NM 87198

1 KRWG-TV
New Mexico State University
Attn: Gary Worth
P.O. Box 30001
MSC TV 22
Las Cruces, NM 88003-8001

1 Key Technologies, Inc.
Attn: Dr. Alan Kuhn
3620 Wyoming N.E.
Suite 108
Albuquerque, NM 87111

1 Land of Enchantment Realty
Attn: Gale Martin
P.O. Box 20217
Albuquerque, NM 87154

1 Lawrence Livermore National Laboratory
Attn: Joe Shinn
MS L453
P.O. Box 808
Livermore, CA 94551

1 Los Alamos National Laboratory
Attn: Kay Birdsell
EES-5, MS F665
Los Alamos, NM 87545

1 Los Alamos National Laboratory
Attn: Kenneth V. Bostick
MS J495
Los Alamos, NM 87545

1 Los Alamos National Laboratory
Attn: Deba Daymon
MS M992
P.O. Box 1663
Los Alamos, NM 87545
1 Los Alamos National Laboratory
Attn: Bruce Erdal
EM-TD
MS J591
Los Alamos, NM 87545

1 Los Alamos National Laboratory
Attn: John Hopkins
MS M992
P.O. Box 1663
Los Alamos, NM 87545

1 Los Alamos National Laboratory
Attn: Steven Limback
ESA-EPE
MS J576
Los Alamos, NM 87545

1 Los Alamos National Laboratory
Attn: Dr. John W. Nyhan
MS J495
Los Alamos, NM 87545

1 Los Alamos National Laboratory
Attn: Nina Rosenberg
EES-DO
MS D446
Los Alamos, NM 87545

1 Los Alamos National Laboratory
Attn: Paul B. Schumann, D. Env
P.O. Box 1663
MS M992
Los Alamos, NM 87545

1 Los Alamos National Laboratory
Attn: Earl Whitney
EES-5
MS F665
Los Alamos, NM 87545

1 Louisiana Department of Environmental Quality
Attn: Narendra M. Dave
P.O. Box 82178
Baton Rouge, LA 70884-2178

1 MDM/Lamb, Inc.
Attn: Eric Rogoff
6121 Indian School Rd., N.E.
Suite 105
Albuquerque, NM 87110

1 MSE Technology Applications, Inc.
Attn: David A. Emilia, Ph.D.
P.O. Box 4078
200 Technology Way
Butte, MT 59702

1 Mesa County Landfill Management
Attn: Robert E. Edmiston
P.O. Box 20000
Grand Junction, CO 81502-5060

1 Mevatec Corporation
Attn: Joseph A. Lujan
2160 Pioneer
Las Cruces, NM 88011

1 Mitretek Systems
Attn: Ming P. Wang, Ph.D., P.E.
7525 Colshire Drive
McLean, VA 22102-7400

1 National Instruments
Attn: Gretchen Edelmon
3301-R Coors Rd. N.W.
Suite 310
Albuquerque, NM 87120

1 National Research Council
Attn: Robert Andrews, Ph.D.
National Academy of Science
Board of Radioactive Waste Mgmt.
2001 Wisconsin Ave., N.W.
Washington, DC 20007

1 National Tribal Environmental Council
Attn: Margaret L. Gover
2221 Rio Grande NW
Albuquerque, NM 87104

1 New Mexico Junior College
Attn: Pannell Library
Lovingston Highway
Hobbs, NM 88240

1 New Mexico Environment Department
Attn: J. Espinosa
1190 St. Francis Drive
Santa Fe, NM 87502

1 New Mexico Environment Department
Attn: Michael J. Chacon
2044 Galisteo
Santa Fe, NM 87502
<table>
<thead>
<tr>
<th>1</th>
<th>New Mexico Environment Department</th>
<th>Parsons Infrastructure & Technologies Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Will Moats</td>
<td>Attn: Gregory B. Cotton</td>
<td></td>
</tr>
<tr>
<td>1190 St. Francis Drive</td>
<td>P.O. Box 1625</td>
<td></td>
</tr>
<tr>
<td>Santa Fe, NM 87502</td>
<td>MS 3954</td>
<td></td>
</tr>
<tr>
<td>1 New Mexico Environment Department</td>
<td>Idaho Falls, ID 83415-3954</td>
<td></td>
</tr>
<tr>
<td>Attn: Richard A. Stafford, P.E.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1190 St. Francis Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Fe, NM 87502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 New Mexico State Library</td>
<td>Pioneer Industries, Inc.</td>
<td></td>
</tr>
<tr>
<td>325 Don Gaspar</td>
<td>Attn: Jim Ward</td>
<td></td>
</tr>
<tr>
<td>Santa Fe, NM 87503</td>
<td>4112 Blue Ridge NE</td>
<td></td>
</tr>
<tr>
<td>1 New Mexico Tech</td>
<td>Albuquerque, NM 87111</td>
<td></td>
</tr>
<tr>
<td>Attn: Martin Speere Memorial Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socorro, NM 87810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Norm Henry</td>
<td>Pioneer Technical Services, Inc.</td>
<td></td>
</tr>
<tr>
<td>15 W. Yakima Ave. Suite 200</td>
<td>Attn: Brad Archibald</td>
<td></td>
</tr>
<tr>
<td>Yakima, WA 98902</td>
<td>P.O. Box 3445</td>
<td></td>
</tr>
<tr>
<td>1 OHM Remediation Services Corp.</td>
<td>Butte, MT 59702</td>
<td></td>
</tr>
<tr>
<td>Attn: Dale Allen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4897 Oakland Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denver, CO 80239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 OHM Remediation Services Corp.</td>
<td>Rangeland & Wildlife Habitat Inventory,</td>
<td></td>
</tr>
<tr>
<td>Attn: Dyan Foss</td>
<td>Ecological Analysis, Rehabilitation & Planning</td>
<td></td>
</tr>
<tr>
<td>4897 Oakland Street</td>
<td>Attn: Gale L. Wolters, Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Denver, CO 80239</td>
<td>801 Navarra Way SE</td>
<td></td>
</tr>
<tr>
<td>1 Oak Ridge National Laboratory</td>
<td>Albuquerque, NM 87123</td>
<td></td>
</tr>
<tr>
<td>Attn: Tom Early</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.O. Box 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oak Ridge, TN 37831</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Oak Ridge National Laboratory</td>
<td>Reclamation Research Unit</td>
<td></td>
</tr>
<tr>
<td>Attn: Cindy Kendrick</td>
<td>Attn: Stuart Jennings</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 2008</td>
<td>106 Linfield Hall – MSU</td>
<td></td>
</tr>
<tr>
<td>Oak Ridge, TN 37831</td>
<td>Bozeman, MT 59717</td>
<td></td>
</tr>
<tr>
<td>1 Oak Ridge National Laboratory</td>
<td>Reclamation Technology, Inc.</td>
<td></td>
</tr>
<tr>
<td>Attn: Timothy Christman</td>
<td>Attn: Jerald R. Williams</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 1049</td>
<td>P.O. Box 7574</td>
<td></td>
</tr>
<tr>
<td>Columbus, OH 43216-1049</td>
<td>Athens, GA 30604</td>
<td></td>
</tr>
<tr>
<td>1 Ohio Environmental Protection Agency</td>
<td>Reynolds Electrical & Engineering Co., Inc.</td>
<td></td>
</tr>
<tr>
<td>DERR</td>
<td>Attn: Michael J. Sully</td>
<td></td>
</tr>
<tr>
<td>Attn: Timothy Christman</td>
<td>P.O. Box 98521</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 1049</td>
<td>Las Vegas, NV 89193-8521</td>
<td></td>
</tr>
<tr>
<td>Columbus, OH 43216-1049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Parkhill, Smith & Cooper, Inc.</td>
<td>Reynolds Electrical & Engineering Co., Inc.</td>
<td></td>
</tr>
<tr>
<td>Attn: Robert H. (Holly) Holder, P.E.</td>
<td>Attn: Kevin K. Van Cleave</td>
<td></td>
</tr>
<tr>
<td>4222 85th Street</td>
<td>P.O. Box 98521</td>
<td></td>
</tr>
<tr>
<td>Lubbock, TX 79423</td>
<td>Las Vegas, NV 89193-8521</td>
<td></td>
</tr>
<tr>
<td>1 Rust Geotech</td>
<td>Reynolds Electrical & Engineering Co., Inc.</td>
<td></td>
</tr>
<tr>
<td>Attn: W. Joseph Waugh, Ph.D.</td>
<td>Attn: Kevin K. Van Cleave</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 14000</td>
<td>P.O. Box 98521</td>
<td></td>
</tr>
<tr>
<td>2597 B ¾ Road</td>
<td>Las Vegas, NV 89193-8521</td>
<td></td>
</tr>
<tr>
<td>Grand Junction, CO 81502-5504</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 SCS Engineers
Attn: Jian W. (Frank) Lliu
2702 North 44th Street
Suite 105B
Phoenix, AZ 85008-1583

1 Sadat Associates
Attn: John Caputo
116 Village Blvd.
Princeton, NJ 08543

1 Science & Engineering Assoc., Inc.
Attn: Bill Lowry
3205 Richards Lane
Santa Fe, NM 87505

1 The Snow Company Inc.
Attn: Tom Snow
P.O. Box 90670
Albuquerque, NM 87199

1 South Dakota State University
College of Engineering
Civil & Environmental Engineering Dept.
Attn: Vernon R. Schaefer, Ph.D., P.E.
Box 2219, CEH 112
Brookings, SD 57007-0495

1 Special Technologies Laboratory
Attn: Paul Hurley
5520 Ekwill St.
Santa Barbara, CA 93111-2335

1 State of California
California Environmental Protection Agency
Attn: Darryl Petker
8800 Cal Center Drive
Sacramento, CA 95826

1 State of Idaho
Division of Environment Quality
Attn: Brian Gaber
1410 North Hilton
Boise, ID 83706-1255

1 State of Louisiana
Department of Environment Quality
Hazardous Waste Division
Attn: Narendra M. Dave
P.O. Box 82178
Baton Rouge, LA 70884-2178

1 State of New Mexico
Environment Department
Attn: Russell (Rusty) Rodke
1190 St. Francis Drive
Santa Fe, NM 87502

1 State of New Mexico
Division of Water Quality
Attn: Mark Novak
288 North 1460 West
Salt Lake City, UT 84114-4870

1 State of New Mexico
Division of Water Quality
Attn: Maggie Davison
Herschler Building
Cheyenne, WY 82002

1 Special Technologies Laboratory
Attn: Paul Hurley
5520 Ekwill St.
Santa Barbara, CA 93111-2335

1 State of New Mexico
Land Office
Attn: Tim A Callahan
4308 Carlisle NE
Suite 209
Albuquerque, NM 87107

1 SubTerra Remedial Engineers, Inc.
Attn: Andrew Murray
1820 Bering Drive
Suite 23
San Jose, CA 95112
1 U.S. Department of Energy
 Attn: Gary Huffman
 Rocky Flats Office
 Highway 93rd & Cactus St.
 Golden, CO 80402

1 U.S. Department of Energy
 Attn: Sharon Johnson
 Savannah River Operations Office
 703 A, Rm. B202
 Aiken, SC 29802

1 U.S. Department of Energy
 Attn: Missy Klem
 Albuquerque Operations Office
 P.O. Box 5400
 Albuquerque, NM 87185

1 U.S. Department of Energy
 Attn: Jeff Lenhart
 Albuquerque Operations Office
 P.O. Box 5400
 Albuquerque, NM 87185

1 U.S. Department of Energy
 Attn: Julianne Levings
 Albuquerque Operations Office
 P.O. Box 5400
 Albuquerque, NM 87185

1 U.S. Department of Energy
 Attn: Doug Maynor
 Ohio Operations Office
 P.O. Box 3020
 Miamisburg, OH 45343

1 U.S. Department of Energy
 Attn: Johnny Moore
 Oak Ridge Operations Office
 EW-923
 P.O. Box 2001
 Oak Ridge, TN 37831

1 U.S. Department of Energy
 Attn: Chuck Morgan
 Nevada Operations Office
 2753 W. Highland Rd.
 Las Vegas, NV 89109

1 U.S. Department of Energy
 Attn: Scott McMullin
 Savannah River Operations Office
 P.O. Box A
 Aiken, SC 29802

1 U.S. Department of Energy
 Attn: James Paulson
 Chicago Operations Office
 9800 South Cass Ave.
 Argonne, IL 60439

1 U.S. Department of Energy
 Attn: Dale Pflug
 Chicago Operations Office
 9800 South Cass Ave.
 Argonne, IL 60439

1 U.S. Department of Energy
 Attn: Elizabeth Phillips
 Oak Ridge Operations Office
 P.O. Box 2001
 Oak Ridge, TN 37830

1 U.S. Department of Energy
 Attn: Elisabeth Reber-Cox
 Oakland Operations Office
 Room 700 N
 301 Clay Street
 Oakland, CA 94612

1 U.S. Department of Energy
 Attn: Shannon Saget
 Richland Operations Office
 P.O. Box 550, K8-50
 Richland, WA 99352

1 U.S. Department of Energy
 Attn: Pam Saxman
 Albuquerque Operations Office
 P.O. Box 5400
 Albuquerque, NM 87185

1 U.S. Department of Energy
 Attn: George Schneider
 Idaho Operations Office
 785 DOE Place
 Idaho Falls, ID 83402

1 U.S. Department of Energy
 Attn: Mel Shupe
 Federal Energy Technology Center
 Industrial Park
 P.O. Box 3462
 Butte, MT 59702

1 U.S. Department of Energy
 Attn: Helen Stolz
 Nevada
 P.O. Box 98518
 Las Vegas, NV 89193
1 U.S. Department of Energy
Attn: Maria Vargas
Richland Operations Office
P.O. Box 550
Richland, WA 99352

1 U.S. Department of Energy
Attn: Jef Walker
EM-53
Cloverleaf Bldg.
19901 Germantown Rd.
Germantown, MD 20874

1 U.S. Department of Energy
Attn: Jody Wangh
Grand Junction Office
2597 B ¾ Road
Grand Junction, CO 81503

1 U.S. Department of Energy
Attn: Rod Warner
Ohio Operations Office
P.O. Box 538705
Cincinnati, OH 45030

1 U.S. Department of Energy
Attn: Phillip Washer
Savannah River Operations Office
Bldg. 773-A
P.O. Box 616
Aiken, SC 29803

1 U.S. Department of Energy
Attn: Bill Wilborn
Nevada Operations Office
2753 S. Highland Rd.
Las Vegas, NV 89109

1 U.S. Department of Energy
Attn: Thomas Williams
Idaho Operations Office
MS1219
785 DOE Pl.
Idaho Falls, ID 83402

1 U.S. Department of Energy
Attn: James Wright
Savannah River Operations Office
Bldg. 703-46A
P.O. Box A
Aiken, SC 29803

1 U.S. Department of Energy
Attn: Paul Zielinski
EM-443
Cloverleaf Bldg.
19901 Germantown Rd.
Germantown, MD 20874

1 U.S. Department of Interior
Bureau of Land Management
Attn: Thomas Custer
1800 Marquess
Las Cruces, NM 88005-3371

1 U.S. Environmental Protection Agency
Attn: Yoon-Jean Choi
Region I
1 Congress Street
Suite 1100
Boston, MA 02114-2023

1 U.S. Environmental Protection Agency
Attn: Kelly Madalinski
401 M. Street S.W.
Mail Code 51102G
Washington, DC 20460

1 U.S. Environmental Protection Agency
Attn: Arturo Palomares
Region 8
999 18th Street
Suite 500
Denver, CO 80202

1 U.S. Environmental Protection Agency
Attn: David A. Carson
Mail Location CHL
26 West Martin Luther King Drive
Cincinnati, OH 45268-3001

1 U.S. Environmental Protection Agency
Office of EcoSystem Protection & Remediation
Attn: Paul S. Mushovic
8EPR-F
999 18th Street
Suite 500
Denver, CO 80202

1 U.S. Environmental Protection Agency
Attn: Darryl Petker, P.E.
State of California
Integrated Waste Management Board
8800 Cal Center Drive
Sacramento, CA 95826